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ABSTRACT

Synthesis and applications of metallic nanocrystals (NCs) has been a focus of the science

and engineering communities for the last twenty years. This is due to the potential impact in

a wide area in applications (e.g. plasmonics, catalysis, drug delivery) and the high flexibility

in design of NC shape and structure. Advances in nanoscience rely on fundamental under-

standing of physical properties of nanoparticles and nanostructures. Our focus is on the

post-synthesis dynamics or evolution of NCs which is mediated by diffusion of atoms around

their periphery. Long-range diffusion and coalescence of NCs synthesized by deposition on

crystalline surfaces is observed experimentally. The process is referred as Smoluchowski

Ripening (SR). Although a coarse-grained mean-field theory of the long-range diffusion

provides a macroscopic understanding, features deriving from the discreteness of small size

islands (O(10)−O(102) atoms) are not captured. We performed kinetic Monte Carlo (kMC)

simulations of a suitably crafted stochastic atomistic model for epitaxial 2D metal (M) NCs

at various temperatures on a M(100) substrate and discovered a complex oscillatory de-

crease with size in diffusivity. Behavior was explained by analysis of energetic and entropic

factors (the latter involving combinatorial analysis of NC configurations). For diffusion of

epitaxial 3D NCs of relevance to catalysts degradation, we developed an atomistic model

incorporating the first realistic description of periphery (surface) diffusion kinetics. Similar

oscillatory nature in diffusivity was observed in simulation of {100}-epitaxially supported

3D NCs, and explained identifying the diffusion pathway and characterizing its energetics.

The same atomistic model was applied to study: reshaping of individual NCs synthesized

with non-equilibrium cubic, octahedral, etc. forms; sintering of pairs of NCs; and pinch-

off of elongated nanorods. The time scale of sintering for two ∼ 4 nm gold nanocrystals

observed in experiment is recovered in our simulation model.
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CHAPTER 1. INTRODUCTION

The impact of nanoscience and nanotechnology on human society and thus on our daily

lives is beyond doubt. The functionality of nanomaterials for applications often comes

from the ability to synthesize artificial far-from-equilibrium structures on the nanoscale. In

working or operating environments, those structures may not be static or frozen, but in-

stead dynamic and suffer morphological changes back towards their equilibrium forms. As a

consequence, functionality can decay with time. Although the time evolution of nanostruc-

tured surfaces and nanoclusters (NCs), also described as nanocrystals or nanoparticles, is of

central importance in determining their shape and structural stability which impacts their

utility for applications, the understanding of these phenomena is yet far from complete.

Thus, our focus in this thesis is on exploration of morphological time evolution of metallic

nanoclusters by crafting realistic atomistic-level stochastic models behavior of which is de-

termined Kinetic Monte Carlo (KMC) simulations and further elucidated with appropriate

analytical theory. This modeling incorporates the feature that for these systems, evolution

is mediated by periphery diffusion of atoms around the nanoclusters, i.e., edge diffusion

for two-dimensional (2D) epitaxial nanoclusters, and surface diffusion for three-dimensional

(3D) nanoclusters. Publications on this and related topics from the Ph.D. research are

listed as Ref [1–11], and submitted papers are listed as Ref. [12–14]. Each main chapter

(2–6) of this thesis corresponds to a published journal article [2–6] with myself as the first

author. Work excerpted from multiple other papers appears in the Appendix.

There are two basic aspects of NC evolution. The first is shape or structural evolution

of individual NCs, or the coalescence or sintering of NC pairs. The second is the evolution,
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and specifically the coarsening of NC arrays, which results in a decrease in the number and

corresponding increase in mean size of the NCs. There are two basic pathways for coars-

ening: Ostwald Ripening (OR) wherein smaller NCs dissolve and transfer their atoms to

larger NCs, and Smoluchowski ripening (SR) which involves NC migration and coalescence.

PhD research included the first analysis characterizing OR kinetics on Au(111) surfaces

published in J. Phys. Chem. C [7], but this was not a major focus of activities. Rather, a

major focus was on aspects of Smoluchowski ripening (SR) process, and specifically the NC

migration component of this process, for both single-atomic-layer 2D [2,3,11] and multilayer

3D [1, 6] epitaxial NCs. This is a key process causing degradation of 3D supported metal

NC catalysts.

Figure 1.1: (a) The journal cover of article [3]. (b) The supplementary journal cover of

article [1].

First, we describe our studies related to 2D epitaxial metallic NCs on low-index surfaces

of the same metal (so-called homoepitaxial systems). This work was based on a stochastic

atomistic-level model which was crafted to effectively capture the details of edge diffusion

of atoms around the periphery of the NC (e.g., distinguishing the rate for diffusion along

straight close-packed steps from that to round corners or kinks on the step edge). For

the migration part of SR, the long range diffusion phenomena has been observed through

scanning tunneling microscopy (STM) experiments since mid-1990’s [15–19] on various sur-



www.manaraa.com

3

faces, prompting numerous theoretical studies [20–26]. Intuitively, a nanoparticle with a

larger size diffuses slower than a smaller one. Classical main-field theory [27] predicts a

monotonic dependence of the diffusion coefficient DN ∼ N−β on the size N of nanoparticle,

with β = 3/2 for a 2D nanoparticle on a supported facet. In Chapter 2 corresponds to an

article published in Physical Review B [2] analyzing the diffusion behavior of 2D homoepi-

taxial adatom nanoislands on a metal (100) surfaces. Against expectations, we discovered

complex oscillatory decay of diffusion coefficients with the size of 2D nanoislands, unantic-

ipated in multiple previous studies. In addition to precise simulation analysis, we utilized

a combinatorial analysis exploiting concepts from number theory to characterize entropic

aspects of these systems and thus provide deeper understanding of observed behavior. In

Chapter 3 (an article selected as a journal cover for Journal of Physical Chemistry C [3]

which shown as Fig. 1a) we further extended our study on 2D vaccancy nanopits, to which

relatively little attention has been paid. Furthermore, our simulation results are compared

with experiments [16,28] for Ag(100) achieving good agreement with what we regard as the

most reliable results and trends, and providing a determination of key energetic parameters

for this system.

Another aspect of the evolution of 2D epitaxial NCs is their reshaping. We mentioned

above coalescence or sintering as a component of the SR process. There had been extensive

previous studies of this process, so it was not incorporated as part of the Ph.D. research.

However, another aspect of reshaping arises since formation of 2D epitaxial NCs by de-

position on surface often results in far-from-equilibrium growth shapes. These will evolve

post-deposition to equilibrium shapes which are determined by a 2D version of the so-called

Wulff construction (which is discussed further below in the context of 3D NCs). This evolu-

tion process had not been modeled previously for homoepitaxial deposition on metal(111)

surface where triangular and even fractal far-from-equilibrium growth shapes are observed.

Modeling was performed for the evolution of triangular to hexagonal equilibrium shapes

and reported as part of a major review on reshaping of NCs in Chemical Reviews [1].
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Second, we describe our studies related to 3D NCs also commonly referred to as 3D nano-

crystals. As noted above, these can be synthesized with remarkable control of possibly non-

equilibrium “artificial shape and structure [29,30], which enables fine tuning of functionality.

However, such non-equilibrium structures tend to convert to a more energetically favorable

shapes. On the nanometer scale, it is anticipated as noted above that the dominant mass

transport mechanism facilitating reshaping and sintering is surface diffusion (or periphery

diffusion) [31, 32]. These reshaping processes bring up a natural question: what is the

equilibrium shape or energetically preferred shape of a NC under different constraints?

Traditionally, the equilibrium shape of a NC is constructed through Wulff (3D) construction

[33] in a continuous framework (versus a discrete atomistic frmwork). In the case of a

NC supported on a substrate, a modified Wulff construction known as a Kaischew [34]

(or Winterbottom) construction applies. We will present multiple applications of these

approaches in the Appendix excerpted from three published papers [1,9,10]. However, these

approaches are only valid in continuum (large size) regime. In a discrete nanoscale regime,

the sizes corresponding most closely to these continuum Wulff shapes are often regarded as

“magic sizes”. Between two magic sizes, a more careful analysis of stability of nanoparticles

for fcc metal NCs is given in Chapter 4 (corresponding to an article published in Journal

of Physical Chemistry C [4]). We have identified a 49 sizes, with a total of 70 distinct

closed-shell configurations between each consecutive pair of two magic sizes. Energetic and

geometric features of these NCs are analyzed. Though it is not the focus of this thesis, this

work also discusses the implications of our findings for “crystal fractionalization”. In this

process, self-assembly starting with polydisperse NCs results in a spontaneous separation

into two distinct crystalline NC superlattice phases (whereas starting with NCs of a single

size results in formation of a single crystalline superlattice NC phase).

Regarding the reshaping process, the path from a far-from-equilibrium metallic NC to

stable equilibrium structures (like those described in Chapter 4) is modeled in Chapter 5

(corresponding to an article published in Physical Review Materials [5]). Again, for metal
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NCs, reshaping is generally mediated by surface diffusion. There were in existence previous

studies of reshaping for metallic NC using stochastic atomistic models to access time scale

of seconds to tens of minutes which are often relevant for experiments. However, these used

generic so-called bond-counting type formalisms to describe diffusion barriers controlling

diffusion rates in the numerous local environments which can occur on NC surfaces. How-

ever, this formalism fails dramatically to accurately describe this diversity of barriers, e.g.,

for diffusion of atoms across various low-index facets, diffusion of atoms along step edges,

and diffusion of atoms between layers and facets. Thus our work developed a stochastic

model incorporating the first realistic prescription of the kinetics of surface diffusion in

these numerous local environments (contrasting previous generic prescriptions). Our model

was applied to analyze three different classes of reshaping processes. Reshaping of a far-

from-equilibrium shapes to equilibrium Wulff shapes is studied extensively for nanocubes

(which have been synthesized for many metals), but also for other simple geometric shapes

which have been synthesized. In addition, we analyzed the merging of two NCs in contact

(sintering), for which success was validated by recovering the time scale of Au NCs sin-

tering observed in recent high-resolution TEM experiments [35]. This work also explored

the pinch-off of elongated nanorods or nanowires, which fragmented into pieces instead of

reshaping to a single compact NC with truncated octahedral equilibrium shape. In addition

to the Physical Review Material article [5], additional analysis of reshaping was incorpo-

rated as part of the major Chemical Reviews article [1], for which a schematic summary of

our work was selected as a supplementary Journal Cover. See Fig. 1b

In Chapter 6 (corresponding to an article published in Nanoscale [6]), we applied our

realistic stochastic model used in the reshaping studies of Chapter 5 to analyze diffusion

of epitaxially 3D supported NCs. Our model parameters are chosen to correspond to Ag.

Similar systems of 3D Ag NCs has been studied on graphite [36] and other oxides surfaces

[37] including MgO, Al2O3 and TiO2. Specifically, our model is applicable to Ag/MgO(001),

a system exhibiting cube-on-cube{100} expitaxy [38]. Given the importance of the diffusion
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of supported 3D metallic NCs in the context of catalyst degradation, the size dependence of

diffusivity had been considered in previous classic studies, and incorporated into modeling of

the kinetics of degradation via SR. However, such work assumed a simple monotonic decay of

diffusivity with size. In contrast, our simulations revealed a complex oscillatory decay with

size reminiscent of, but fundamentally different in detail from that for 2D clusters described

in Chapter 2 and Chapter 3. To elucidate behavior, we identified optimal diffusion pathways,

which involved dissolving and reforming outer layers of facets. Then, analytic assessment

of the variation of energy along such minimum energy pathways was provided, both at

atomistic and coarse-grained continuum levels. This allowed determination of effective

barriers for diffusion for different NC sizes which matched well our precise simulation results

for diffusivity.

Finally, Chapter 7 provides overall conclusion based upon the results achieved from the

multiple studies of NC evolution in this thesis.
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Abstract

For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100)

surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the

diffusion coefficient scales like DN ∼ N−β with β = 3/2. However, we find quite different

and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small

sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes

N = Np = L2 or L(L+ 1), for L = 3, 4, ... having unique ground-state shapes, for moderate

sizes 9 ≤ N ≤ O(102); the same also applies for N = Np + 3, Np + 4, ... (iii) facile diffusion

but with large β > 2 for N = Np+1 and Np+2 also for moderate sizes 9 ≤ N ≤ O(102); (iv)

merging of the above distinct branches and subsequent anomalous scaling with 1 ≤ β < 3/2,
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reflecting the quasifacetted structure of clusters, for larger N = O(102) to N = O(103); (v)

classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges

apply for typical model parameters. We focus on the moderate size regime where we show

that diffusivity cycles quasiperiodically from the slowest branch for Np + 3 (not Np) to

the fastest branch for Np + 1. Behavior is quantified by kinetic Monte Carlo simulation

of an appropriate stochastic lattice-gas model. However, precise analysis must account for

a strong enhancement of diffusivity for short time increments due to back correlation in

the cluster motion. Further understanding of this enhancement, of anomalous size scaling

behavior, and of the merging of various branches, is facilitated by combinatorial analysis of

the number of the ground-state and low-lying excited state cluster configurations, and also

of kink populations.

DOI: 10.1103/PhysRevB.96.235406

2.1 Introduction

Significant long-range diffusion of large two-dimensional (2D) homoepitaxial adatom

clusters on single-crystal metal (100) surfaces with sizes on the order of hundreds or even

thousands of atoms was studied by scanning tunneling microscopy (STM) as early as the

mid-1990’s [1, 2] and also more recently [3]. It is generally accepted that cluster diffu-

sion is mediated by periphery diffusion (PD), also described as edge diffusion, of adatoms

along the steps at the periphery of the cluster. The STM studies prompted extensive

atomistic lattice-gas modeling starting in the 1990’s of epitaxial cluster diffusion [4–11]

and of related reshaping phenomena [12–19]. This work supplemented limited earlier stud-

ies [20–22]. Mesoscale continuum Langevin theory for PD-mediated cluster diffusion has

also been applied, and predicts that the diffusion coefficient for clusters of N atom satisfies

DN ∼ σPDN
−β with β = 3/2,where σPD denotes the mesoscale mobility for atoms at step

edges [23, 24]. Simple mean-field type atomistic-level theory for compact clusters also pre-

dicts the same size dependence as the continuum theory [25,26]. However, significantly, the

https://https://journals.aps.org/prb/pdf/10.1103/PhysRevB.96.235406


www.manaraa.com

12

experimentally observed size scaling exponent β for moderate cluster sizes, N = O(102) to

O(103), is below the prediction of the continuum and mean-field theories [2, 3].

Diffusion of smaller 2D clusters with less than ∼ 10 atoms on metal (100) surfaces

was also observed but instead by field ion microscopy [27–29], and has been interpreted

with appropriate theoretical analyses [30–33]. However, diffusion of small sized clusters

exhibits a distinctive irregular size dependence and Arrhenius energetics, which is readily

understood, e.g., given the innate stability of 2×2 atom square clusters relative to two-atom

dimers and three-atom trimers. We also mention that there have been multiple studies of

2D cluster diffusion for metal (111) and metal (110) homoepitaxial systems, and also for

heteroepitaxial metal systems [34–37]. Theoretical studies, particularly for metal (111)

systems, have explored concerted many-atom and off-lattice nonepitaxial mechanisms [38–

41]. These latter systems are of less relevance for the current study, so we do not discuss

them further.

For 2D cluster diffusion on metal (100) surfaces, there is naturally interest in the effective

or overall activation barrier Eeff for the process where DN ∼ exp [−Eeff/(kBT )].Here, kB

denotes the Boltzmann constant, and T denotes the surface temperature. Eeff is related to

the kinetic parameters in atomistic-level models including the barrier Ee to diffuse along

close-packed (110) cluster step edges, and any additional barrier δ to round corners or

kinks. Eeff also reflects thermodynamic parameters determined by adatom interactions,

particularly the formation energy Eform to create a step edge atom from a kink atom. It

was previously suggested that long-range cluster diffusion is limited by creation of edge

atoms through their extraction from the core of the cluster or core breakup [1, 20], so

that Eeff = Ee + δ + Eform [19]. This perspective is consistent with the predictions of

the mesoscale continuum Langevin theory where the activation energy for cluster diffusion

corresponds to that for mobility of edge atoms EPD, where σPD ∼ exp [−EPD/(kBT )] with

EPD = Ee + δ +Eform [23,24]. The latter result for EPD has been rigorously demonstrated

in the absence of a corner or kink rounding barrier [42], but it is expected to apply more
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generally [43].

However, Mills et al. [10] noted that if cluster edges are effectively facetted, then cluster

diffusion can be limited by nucleation of new edge layers on these facetted step edges. This

picture leads to higher values of Eeff than predicted above (see Sec. 2.3), and also to a

weaker dependence of DN on N reminiscent of experimental observations. This facetted

regime occurs for linear cluster sizes, L ∼ N1/2 (in units of surface lattice constant, a = 1),

which are below the characteristic separation, Lk ≈ 1/2 exp [εk/(kBT )], of kinks on close-

packed 〈110〉 edges [44]. Here, εk denotes the kink creation energy. Another perspective

on anomalous size scaling for diffusivity was provided by Pierre-Louis [45] ho modified the

continuum Langevin theory by introducing an additional diffusion field for edge atoms. This

approach also recovered weaker size scaling.

Jensen et al. [15] adopted an analogous nucleation-mediated picture to describe the

effective barrier and anomalous size scaling for the relaxation to equilibrium of convex

nonequilibrium cluster shapes. Regarding the relationship between this shape relaxation

process and the long-range diffusion of clusters, it should be noted that both require nu-

cleation of new edge layers. Furthermore, a simple relationship was proposed between the

size scaling exponents for cluster diffusion and relaxation of convex shapes [46]. It was later

shown that further refinement to anomalous scaling could be induced in the presence of an

additional kink or corner rounding barrier [14,17].

However, we show in this contribution that the above observations, while providing

key insight into deviations from standard macroscale and mean-field theories, fall far short

of providing a complete characterization of the full diversity of cluster diffusion behavior

on the nanoscale. A comprehensive and precise characterization of the dependence of the

cluster diffusion coefficient DN on size N can be provided by analysis utilizing kinetic Monte

Carlo (KMC) simulation of a stochastic atomistic-level lattice-gas model for cluster diffusion

which incorporates an appropriate description of PD kinetics. Indeed, this approach is a

key component of the current study, and reveals various size regimes with distinct behavior:
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(i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with weak

size scaling β < 1 for perfect “perfect” sizes N = Np = L2 or L(L + 1) with L = 3, 4, ...

having unique square or near-square ground-state shapes, and also for sizes Np+3, Np+4, ...,

versus facile diffusion with strong size scaling β > 2 for sizes Np+1 and Np+2 for moderate

sizes 9 ≤ N ≤ O(102); (iii) merging of these distinct branches and subsequent anomalous

scaling with 1 . β < 3/2, the latter reflecting the quasifacetted structure of clusters for

larger N = O(102) to N = O(103); and (iv) classic scaling with β = 3/2 consistent with

macroscopic or mean-field theories for very large N = O(103) and above. We mainly focus

elucidation of behavior in regime (ii), and to some extent regime (iii). To this end, in

addition to KMC analysis, we also develop and utilize results from combinatorial analysis

of cluster configurations to provide deeper insight.

In Sec. 2.2, we describe our stochastic lattice-gas model for PD-mediated cluster dif-

fusion, and also various strategies for model analysis. In Sec. 2.3, we discuss different

possible types or branches of cluster diffusion, and Sec. 2.4 present KMC results providing

an overview of the variation of DN versus N . A brief report of such behavior was recently

provided for just one choice of adatom interactions and no kink rounding barrier, δ = 0 [47].

Here, we consider different interactions, and finite δ > 0 as well as δ = 0. We also present

a comprehensive analysis and interpretation of diverse aspects of this behavior, as detailed

in the following sections. In Sec. 2.5, we describe the variation of the effective diffusivity,

DN (δt), for short time increments, δt, where DN = limδt→∞DN (δt). Characterization of

the variation of DN (δt) with δt, which reflects a strong back correlation in cluster motion,

is necessary for a reliable extraction of DN . Additional elucidation of diverse size scaling

and cyclic variation of diffusivity in regime (ii), and of intermingling and merging of dif-

fusion branches by regime (iii), is provided in Sec. 2.6 based on counting the number of

ground- state and first-excited-state configurations of key classes of clusters. Conclusions

are provided in Sec. 2.7.
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2.2 Atomistic Model for Cluster Diffusion

2.2.1 Tailored stochastic lattice-gas model

We adopt a tailored model for PD-mediated epitaxial cluster diffusion on metal (100)

surfaces, which captures the key features of these systems [16]. In our stochastic lattice-gas

model, clusters of adatoms reside on a square lattice of adsorption sites with lattice constant

a typically set to unity. Adatoms interact with just nearest-neighbor (NN) attractive lateral

interactions of strength φ > 0. They can hop to NN sites, and also to 2nd NN (2NN)

sites, provided that hopping retains at least one NN adatom in the cluster. Thus this

hopping dynamics preserves NN connectivity (and size) of the cluster. All hop rates have

the Arrhenius form h = ν exp [−Eact/(kBT )], where ν is a common attempt frequency

for both NN and 2NN hops. Let nNN denote the number of in-plane NN adatoms of the

hopping adatom in its initial configuration. Then, the activation barrier Eact, selected to

be consistent with detailed-balance, satisfies,

Eact = Ee + (nNN − 1)φ for NN hops and

Eact = Ee + (nNN − 1)φ+ δ for 2NN hops. (2.1)

In this model, the edge atom formation energy equals Eform = φ. It also follows that one

has activation barriers of Ee for hopping of isolated adatoms along close-packed 〈110〉 edges

via NN hops, Er = Ee + δ for hopping around corners or kinks via 2NN hops, Ek = Ee + φ

for kink escape via NN hops, and Ec = Ee + φ + δ for “core breakup” via 2NN hops (cf.

Sec. 2.1, see Fig. 2.1). The corresponding rates are denoted he, hr, hk, and hc, respectively.

The characteristic times associated with these various hop rates are denoted τe = 1/he,

τk = 1/hk, etc. An atom can also be extracted from a straight close-packed step edge with

barrier Eextract = Ee + 2φ+ δ, but this process is not prominent, and thus is not shown in

Fig. 2.1.
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Figure 2.1: Schematic of different hopping processes in our stochastic lattice-gas model.

Atoms correspond to filled red squares and available adsorption sites to empty squares.

2.2.2 Model analysis

Our focus is on analysis of the diffusion coefficient DN for clusters of various sizes

N (in atoms). To this end, it is appropriate to first define an effective time-dependent

diffusion coefficient, DN (δt) =
〈

[δr(δt)]2
〉
/(4δt), where δr(δt) is the displacement in the

cluster center of mass (CM) in a time interval δt, and 〈〉 is an average of data over a

long trajectory. Also we set [δr]2 = δr · δr. Comprehensive characterization of model

behavior is naturally extracted from KMC simulation. (See Fig. 2.2 for a typical cluster CM

trajectory extracted from such a simulation.) The algorithm used is a standard rejection-

free Bortz type algorithm. Note that in contrast to a pure random walk, DN (δt) is not in

general constant, but can vary for shorter δt due to correlations in the walk of the cluster

CM [1, 10, 22, 32]. However, DN (δt) plateaus for larger δt, and the conventional diffusion

coefficient is obtained from DN = limδt→∞DN (δt) = DN (∞). Thus appropriate analysis of

DN must account for this transient behavior. For our model where DN (δt) ∝ a2he, one has

that DN (δt)/DN versus heδt, and DN/(a
2he) are independent of our choice of Ee and ν,

and thus he. For reference, choosing Ee = 0.29eV and ν = 1012.5s−1 mimicking Ag/Ag(100)

yields he = 107.6s−1 at 300K.

We expect DN (δt) to have converged to its plateau value of DN for δt > δtc, where
〈

[δr(δtc)]
2
〉
∼ a2, i.e., when the cluster of CM has moved about one lattice constant. To

obtain precise DN , we need the total length of the trajectory ttot of at least O(103δtc). Then
〈

[δr(δtc)]
2
〉

can be estimated from O(103) statistically independent values obtained from

nonoverlapping time increments of length δtc along the trajectory. Overlapping time incre-
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Figure 2.2: Trajectory of CM of a diffusing cluster with N = 36 for φ = 0.20eV with δ = 0

at 300K. Start: red square. End: pink square.

ments can be used, although then the values of [δr(δtc)]
2 are not completely independent.

We choose ttot ∼ 35000δtc.

It is appropriate to note that DN can in principle be determined exactly for any cluster

size N by analysis of the linear master equations for the stochastic lattice-gas model [30,32].

These master equations track the evolution of the probability of various cluster configura-

tions for the infinite possible number of CM positions. Let ΩN denote the total number

of distinct configurations for a cluster of size N . Then, applying a discrete spatial Fourier

transform to these master equations with respect to cluster position converts them into a

finite-dimensional ΩN×ΩN matrix evolution equation in transform space. One then extracts

DN from analysis of the acoustic eigenmode of this evolution matrix, and specifically from

its quadratic variation for small wavenumbers. It should also be noted that the transformed

ΩN ×ΩN matrix encodes connectivity between cluster configurations, i.e., indicating which

configurations can be directly reached from other configurations by hopping of a single edge

atom. Thus the behavior of DN also reflects this connectivity, although in a nontrivial
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indirect way. Finally, we emphasize that an exact analysis utilizing this approach is only

viable for relatively small clusters since ΩN increases quickly with N . Nonetheless, it is

useful to elucidate behavior in the small cluster size regime (i) (see Appendix A).

The relevance of the total number of cluster configurations ΩN is already clear from the

above discussion of exact analysis. However, one anticipates that not all configurations are

equally relevant for the cluster diffusion processes, particularly at lower T . Thus, it is natural

to separately analyze the number of ground-state configurations ΩN (0), the number of first

excited state configurations ΩN (1), etc. This analysis involves nontrivial combinatorics

exploiting results related to partitions of integers in number theory. Additional useful

analysis will involve estimation of the number of kinks in ground state, etc., configurations.

Details are provided in Appendices BD. These results will be utilized to elucidate short-time

transient behavior, anomalous scaling observed for moderate sizes, and intermingling and

merging of different diffusion branches.

2.3 Distinct Branches of Cluster Diffusivity for Moderate Sizes

First, we characterize of various branches or classes of cluster sizes for which distinct

diffusion behavior is observed in regime (ii) of moderate clusters sizes N = 9 to O(102). We

close with comments on behavior for small clusters with N < 9.

2.3.1 Nucleation-mediated (nm) diffusion for “perfect sizes

“Perfect” sizes N = Np = L2 or L(L+ 1), with L = 3, 4, ..., have unique nondegenerate

ground-state shapes corresponding to perfect squares and near-square rectangles, respec-

tively. This uniqueness does not apply for sizes N = L(L + n) with n ≥ 2 where the

L× (L+n) rectangular configuration is either one of multiple ground states, or corresponds

to an excited state. If φ/(kBT ) is not too small, clusters with N = Np primarily exist in

their unique ground-state shapes, and are subject to nucleation-mediated diffusion. In this

process, the first step is extraction of one of the four corner atoms onto a straight close-
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packed 〈110〉 step edge, which raises the total energy by ∆E = +φ. However, typically,

this atom will soon return to the more highly coordinated corner site. Thus, to initiate

significant cluster restructuring leading to long-range diffusion, it is necessary that a second

atom detaches from a corner and aggregates with the first atom before the first atom can

return to the corner [9, 14, 16]. In this way, a step edge dimer is formed, thus potentially

nucleating a new edge layer. Once this dimer is formed on one edge, subsequent atoms can

migrate from kink or corner sites to complete that new edge layer.

The most direct pathway to facilitate translation of the unique ground state for Np = L2

to a different location, a key component of long-range diffusion, is shown in Fig. 2.3a. In

this case, two atoms are shifted from one side of the cluster to nucleate a dimer on the

opposite side. Thereafter, atoms continue to be shifted from that same side to the opposite

side. After each individual atom transfer is completed, the cluster is in a different first

excited state configuration with energy ∆E = +φ above the ground state. Only when the

last atom is transferred does the energy decrease again by ∆E = −φ. However, we note that

there are indirect pathways leading to long-range diffusion as shown in Fig. 2.3b. Here,

atoms shifted from multiple corners of the cluster whose configuration (after each atom

transfer) wanders through a large number of first-excited state configurations. However, to

achieve the translated ground state, multiple eroded corners must be largely reconstructed,

so that, ultimately, atoms are only removed from a single side of the cluster. Significantly,

we note that while long-range diffusion accesses many configurations isoenergetic with the

first excited state, it requires repeatedly returning to the unique ground-state shape. Figure

2.3c shows the direct Np = L(L+ 1), which is analogous to that for Np = L2.

Finally, we comment on the effective barrier for nucleation-mediated diffusion of perfect

clusters. An isolated edge atom extracted from the corner of a perfect core exists with low

quasiequilibrium density, neq = exp [−φ/(kBT )]. Mills et al. [10] argued that DN should

reflect the nucleation rate knuc ∼ neqhe to create a dimer on an outer edge. knuc is the

product of the density neq times the rate hc of extracting a second atom at the core, as
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Figure 2.3: Nucleation-mediated cluster diffusion for perfect sizes Np = L2. (a) direct and

(b) indirect pathways. (c) Direct pathway for perfect sizes Np = L(L+ 1)

the extracted atom must meet the preexisting edge atom to nucleate a new step edge.

Consequently, the effective barrier for cluster diffusion is given by Eeff = Ee + 2φ + δ

[10, 15,17].

2.3.2 Facile (FA) cluster diffusion

For clusters of size N = Np + 1 and N = Np + 2, with either Np = L2 or L(L+ 1), the

edge dimer nucleation process described above for perfect clusters is not necessary for long-

range cluster diffusion. For N = Np + 1, we note the existence of a “special” ground-state

configuration with an isolated adatom on the edge of a perfect square or rectangular core

of Np atoms. For these special configurations, the isolated edge adatom can readily diffuse

around the entire cluster perimeter. For N = Np+2 , “special” ground-state configurations

involve an NN pair of edge atoms or edge dimer on a perfect core, where this edge dimer
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can dissociate and readily reform on another edge. Either process results in no net change

of energy. After transferring the isolated edge atom or dimer to new edge of the core, atoms

can be transferred from another edge to complete the new edge of the core. This again

leaves an isolated atom or dimer on the edge of a perfect core with shifted location.

The above scenario for N = Np+1 with atoms transferred from a single edge corresponds

to a direct pathway to facilitate translation of the special ground-state configuration to a

different location. This direct pathway is shown in Fig. 2.4(a). However, there are indirect

pathways leading to the same outcome. Analogous to the above case of perfect sizes, these

indirect pathways involve shifting of atoms from multiple corners of the cluster as shown in

Fig. 2.4(b) so the cluster wanders through a large number of ground-state configurations.

However, to achieve the translated ground state, most of these eroded corners must be

reconstructed so that atoms are only shifted from a single side of the cluster. Shifting

atoms from one kink to another does not change the energy after reattachment, so as a

result for either direct or indirect pathways, after each atom transfer, the system evolves

through a set of configurations isoenergetic with the special ground-state configurations.

The direct pathway for N = Np + 2 is shown in Fig. 2.4(c).

Finally, we emphasize that while the diffusing cluster can wander through many isoen-

ergetic configurations, long-range diffusion (if restricted to these configurations) requires

that the cluster repeatedly passes through a special configuration with an isolated atom or

dimer at an edge of a perfect core. This is the only way to create a new complete edge on

the original perfect core. Also, we note that since diffusion of facile clusters just involves

breaking atoms out of kink sites and subsequent edge diffusion, the effective cluster diffusion

barrier Eeff is simply given by Eeff = Ee + φ+ δ.

2.3.3 Other cases of nucleation-mediated cluster diffusion

Clusters of size N = N = Np + n with 3 ≤ n ≤ L, for either Np = L2 or L(L+ 1), also

exhibit nucleation-limited diffusion. The ground states for these sizes include the subclass
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Figure 2.4: Facile cluster diffusion for sizes N = L2+1: (a) direct and (b) indirect pathways.

(c) Direct pathway for sizes N = L2 + 2.

of configurations with a linear triple or longer string of atoms at the edge of a perfect

square or rectangular core. For these configurations, adatoms can readily transfer from the

opposite complete edge to that on which the string of n adatoms reside (without raising the

energy after transfer), thereby completing that edge. However, this leaves behind a triple or

longer string of atoms which cannot readily be transferred to another edge. Certainly, the

ground states are degenerate, as starting with the above subclass of configurations, atoms

can be removed from multiple corners, and added to the above mentioned string with no net

change in energy. However, in any case, nucleation of a dimer on a new outer edge (i.e., on

an edge outside the rectangle inscribing the ground-state configurations) is always required

to facilitate long-range diffusion of the cluster CM. The same argument as used for perfect

clusters indicates that the effective barrier for cluster diffusion equals Eeff = Ee + φ+ δ.

2.3.4 Facile behavior for small sizes n < 9

Diffusion for all small clusters with N < 9 is always facile (i.e., not nucleation-mediated).

For N = 2 or 3, cluster diffusion does not even require breaking atoms out of kink sites,
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so the effective barrier is even lower than described above for facile diffusion of larger

clusters. A dimer CM undergoes a pure random walk on a square grid rotated at 45o

to the adsorption sites with lattice constant a/
√

2 hopping at rate hr. Thus, one has

D2 = D2(δt) = 1/2a2hr and Eeff = Ee + δ. For a trimer, D3(δt) generally decreases with

increasing δt to its asymptotic value, and diffusion is controlled by corner rounding so that

again Eeff = Ee + δ [32]. Cases N = 5 = 2 × 2 + 1 and N = 7 = 2 × 3 + 1 fit within the

category Np + 1. Cases N = 4 = 2× 1 + 2, N = 6 = 2× 2 + 2, and N = 8 = 2× 3 + 2 fit

within the category Np + 2. Thus all these cases with 4 ≤ N ≤ 8 have Eeff = Ee + φ + δ,

and they all exhibit nonconstant DN (δt). (See Appendix A for an exact master equation

based analysis for some of these cases.)

2.4 Cluster Diffusivity versus Size: kMC Results

2.4.1 Cluster diffusivity with no kink rounding barrier (δ = 0)

Figure 2.5: KMC results for DN vs N with δ = 0 and φ = 0.20eV (φ = 0.24eV in the inset)

at 300K.

We first present an overview of KMC results illustrating various size regimes and branches

of DN behavior focusing on the case φ = 0.2eV and δ = 0 at 300K. See Fig. 2.5. For

small sizes N = 4 to 8, high facile values of DN are evident. Even higher values for N = 1
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to 3 are not shown. For moderate sizes, N = 9 to O(102), we just show for clarity only

four distinctive branches: facile Np + 1, facile Np + 2, perfect Np, and slow Np + 3. The

following key features are present: (a) initially high values and rapid decay of DN ∼ N−βf

for facile Np + 1 clusters up to N ∼ 82 with large β ≈ 2.3; similarly high DN , but less

regular decay for facile Np + 2 clusters; (b) the lowest values and slow decay of DN ∼ Nβs

for sizes Np + 3 for N ∼ 39 − 103 with small β ≈ 0.83; (c) very weak size dependence of

DN for perfect Np clusters up to N ≈ 81; perfect Np and slow Np + 3 branches merge for

small N = 12 (and N = 9); (d) intermingling of DN for perfect Np with facile branches for

Nmingle ≈ 43, and subsequent transition to a rapid decrease of DN for perfect clusters; (e)

near-merging of all branches for N ≈ Nmingle ≈ 150. For larger sizes N > Nmerge, if we write

DN ∼ N−βeff, the effective exponent varies slowly from βeff ≈ 1.09 for N just above Nmerge,

to βeff ≈ 1.33 for N from 5001000, to β = 1.50 (the asymptotic value for compact clusters)

for N from 20003600 (see Fig. 2.6). This latter result is consistent with a kink separation

Lk = 1/2 exp [1/2φ/(kBT )[ ≈ 24 for φ = 0.20eV, given that the asymptotic regime should

apply for N � (Lk)
2 ≈ 570.

It is instructive to contrast behavior for φ = 0.20eV with that for φ = 0.24eV retaining

δ = 0 at 300K (see the insets for Figs. 2.5 and 2.6). All of the features described above are

preserved qualitatively for φ = 0.24eV. However, now the deviations between the different

branches for moderate sizes are enhanced, which is a natural consequence of larger values

of φ/(kBT ) producing a larger difference between Eeff for facile and nucleation-mediated

branches. Also, the approach to asymptotic behavior is significantly delayed for larger

φ/(kBT ), as expected given the larger values of Lk. Specifically, for φ = 0.24eV, we find

that βf ≈ 2.6 up to N ∼ 101, β ≈ 0.53 for N ∼ 67−200, Nmingle ≈ 81, and Nmerge ≈ 200250.

With regard to scaling for larger sizes, we find that βtexteff ≈ 0.75 just above Nmerge, and

βeff ≈ 1.12 for N from 5001000. Now Lk = 52 for φ = 0.24eV, so we do not access the

asymptotic scaling for N � (Lk)
2 ≈ 2700. Naturally, choosing φ < 0.20eV would minimize

the difference between different branches for moderate sizes and accelerate the approach to
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asymptotic behavior. However, if φ/(kBT ) is too small, the cluster connectivity constraint

becomes artificial. In the limit as φ/(kBT ) → 0, the clusters become “random animals”

with perimeter length proportional to size. This also results in deviations from β = 1.5 [22].

Figure 2.6: Post-merging effective scaling behavior of DN with N for φ = 0.20eV (φ =

0.24eV in the inset) and δ = 0 at 300K.

Next, we consider in more detail diffusion behavior in the moderate size regime. Figure

2.7 reveals a quasiperiodic variation of DN with N = Np + n within each cycle n = 1 to

nmax, where nmax = L for Np = L2 or L(L+ 1). Specifically, DN has a local maximum for

n = 1, drops significantly for n = 2, and again for n = 3, where the latter corresponds to

the lowest value within each cycle. DN then increases within each cycle N = Np + n for

increasing n = 3, 4, 5, ..., nmax, where N = N + nmax recovers the next perfect size above

Np. For example, for Np = 30(36), and N + nmax = 36(42). Note that the length of these

cycles increases for larger N , and that N = 15, 24, 35, ... is the smallest value of N for which

one can realize Np + 3, Np + 4, Np + 5, ...

Interestingly, DN values for perfect sizes for n = nmax within each cycle can be compa-

rable to those for facile clusters for n = nmax + 2. On the other hand, they are often well

above DN for n = 3 (the slowest clusters). This contrasts a possible perception that perfect

sizes should be the slowest. Thus one might question the assignment of nucleation-mediated
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Figure 2.7: Cyclical behavior of DN vs N between minima (Np + 3) and maxima (Np + 1)

for φ = 0.20eV and δ = 0 at 300K. Inset: φ = 0.24eV.

diffusion for n = nmax versus facile diffusion for n = nmax + 1. However, an Arrhenius plot

for DN versus φ/(kBT ) does show clearly the distinction between Eact for these classes.

Typically, such Arrhenius plots plot ln [DN ] versus for fixed 1/(kBT ), the slope correspond-

ing to Eeff. Here, instead we plot ln
[
DN/(a

2he)
]

versus φ for fixed T = 300K yielding a

slope of −n/(kBT ) with n = 1 (n = 2) for facile (nucleation-mediated) diffusion (see Fig.

2.8). This format is instructive for showing the extent of variation of DN for the expected

range of φ values for metal (100) homoepitaxial systems, and for a typical experimental

temperature (T = 300K).

2.4.2 Cluster diffusivity with a finite kink rounding barrier (δ = 0.1)

The introduction of a significant kink rounding barrier, δ > 0, reduces the magnitude of

DN as a result of the increased Eeff described in Sec. 2.3. However, the qualitative features

of the different diffusion branches for moderate sizes, and the variation of DN versus N are

the same as for δ = 0. These features are shown in Fig. 2.9 for φ = 0.20eV and δ = 0.1eV

at 300K (and in the inset for φ = 0.24eV). A detailed characterization of the cyclical

behavior of DN versus N in the moderate size regime is shown in Fig. 2.10 where again

the local maxima (minima) in DN occur for N = Np + 1 (N = Np + 3). As for δ = 0, DN
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Figure 2.8: Arrhenius analysis of DN for facile (Np + 1, Np + 2) and nucleation-mediated

(Np + n for n = 3, 4, ..., np) sizes with Np = 30 and np = 6. T = 300K is fixed and φ is

varied.

for N = Np + n for the case of perfect sizes with n = nmax is not so far below that for

facile sizes with n = nmax + 2, but well above that for n = 3. Again, we have performed an

Arrhenius analysis to reveal that Eeff for n = 3, 4, ..., and ntextmax (nucleation-mediated

cases) are all similar, and are clearly above those for n = nmax + 1 and n = nmax + 2 (facile

cases).

Figure 2.9: KMC results for DN vs N with δ = 0.10 and φ = 0.20eV (φ = 0.24eV in the

inset) at 300K.
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Figure 2.10: Cyclical behavior of DN vs N between maxima (Np + 1) and minima (Np + 3)

for φ = 0.20eV and δ = 0.1eV at 300K. (Inset) φ = 0.24eV and δ = 0.1eV.

A previous study [17] indicated that introduction of a kink rounding barrier reduces

the values of effective scaling exponents βeff. Specifically, this should apply for regime

(iii) where facile and nucleation-mediated branches have merged, but prior to the true

asymptotic regime of large sizes. For φ = 0.20eV at 300K, we find that just after merging,

βeff ≈ 0.86 for 144 ≤ N ≤ 325 when δ = 0.1eV (versus βeff ≈ 1.09 for 121 ≤ N ≤ 327 when

δ = 0). We also find that βeff ≈ 1.09 for 361 ≤ N ≤ 677 when δ = 0.1eV (versus βeff ≈ 1.32

for 364 ≤ N ≤ 2028 when δ = 0). For φ = 0.24eV, data are more limited for δ = 0.1eV

as the simulation is more computationally demanding. [48] However, we estimate that just

after merging, βeff ≈ 0.71 when δ = 0.1eV (versus βeff ≈ 0.75 when δ = 0). These results

confirm the proposal that increasing δ decreases βeff.

2.5 Time-dependent Diffusivity and Back-correlation

The time-dependent diffusion coefficient, DN (δt) =
〈

[δr(δt)]2
〉
/(4δt), was introduced

in Sec. 2.2.2, where δr(δt) is the CM displacement in a time interval δt. The plateau value

of DN (δt) corresponds to the conventional diffusion coefficient, DN = limδt→∞DN (δt) =
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DN (∞). Thus it is important to understand the transient behavior in order to reliably

assess DN . In fact, this was essential to obtain the smooth cyclical variation of DN shown

in Sec. 2.4. Here, we consider behavior only in the absence of a kink rounding barrier,

δ = 0, although the basic observations and strategies of analysis apply more generally. In

Fig. 2.11, we show KMC simulation results for δ = 0 for the behavior of DN (δt)/DN (∞)

versus heδt for sizes within a single cycle N = Np + 1 to N = Np + nmax (cf. Sec. 2.4). As

noted in Sec. 2.2.1, the form of these curves is independent of the choice of he. There is a

strong decrease in DN (δt) to its plateau value DN = DN (∞). In Sec. 2.5.1, we estimate the

short time-increment values,DN (δt→ 0), for special cases of perfect and facile sizes. Then,

in Sec. 2.5.2, we provide further insight into the underlying back correlation in cluster

motion.

Figure 2.11: Time-dependent diffusion coefficients reflecting backward correlation in the CM

motion for various cluster sizes within a cycle (see text) with φ = 0.20eV (and φ = 0.24eV

in the inset) for δ = 0 at 300K. Here DN (∞) = limδt→∞DN (δt) = DN .

2.5.1 Short-time behavior of DN (δt))

Our estimate of the value of DN (δt → 0) assumes independent contributions to the

mean-square displacement of the cluster CM from the short-time motion of all isolated

(singly coordinated) edge atoms and all doubly coordinated kink atoms. Thus, we sum over
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these contributions to obtain DN (δt→ 0). For short-time increments, δt, the mean-square

displacement of isolated edge atoms (called “monomers” below) from their initial position

satisfies
〈

[δre(δt)]
2
〉
≈ 2heδt, 3heδt, and 4heδt for atoms on straight close-packed steps that

can make two NN hops, atoms at corners that can make one NN and one 2NN hop, and

atoms that can make two 2NN hops, respectively. The latter case is rare for larger clusters,

so effectively one has 2heδt ≤
〈

[δre(δt)]
2
〉
≤ 3heδt. The mean-squared displacement of kink

atoms (just called “kinks” below) from their initial position satisfies
〈

[δrk(δt)]
2
〉
≈ 3hkδt

for atoms that can make one NN and one 2NN hop, and
〈

[δrk(δt)]
2
〉
≈ 4hkδt for corner

atoms that can make two 2NN hops. Thus one has that 3hkδt ≤
〈

[δrk(δt)]
2
〉
≤ 4hkδt.

To simplify the analysis below, we will not discriminate between the different categories

of monomers and kink atoms, and will interpret
〈

[δre(δt)]
2
〉

and
〈

[δrk(δt)]
2
〉

as suitable

averages over all categories. Subsequently, we will just obtain upper and lower bounds for

DN (δt→ 0) using the above upper and lower bounds on
〈

[δre,k(δt)]
2
〉

.

Before presenting our approximation forDN (δt→ 0), we also note that when a periphery

atom is shifted by one lattice constant in a certain direction, the CM of the cluster is

shifted by 1/N in that direction. This will produce an additional factor of 1/N2 = 1/L4

in our analysis of mean-squared cluster displacement. Thus our expression for DN (δt→ 0)

becomes

DN (δt→ 0)

≈ 1

4N2

∑

i


nN,e(i)

〈
[δre(δt)]

2
〉

δt
+ nN,k(i)

〈
[δrk(δt)]

2
〉

δt


 (2.2)

× exp [−Ei/(kBT )]

Z
,

where nN,e(i) and nN,k(i) are the number of monomers and kinks in ith state with energy

Ei, and Z =
∑

i exp [−Ei/(kBT )] is the relevant partition function. We use this result to

estimate DN (δt→ 0) focusing on two special cases. Further details are provided in Ref. [49].

Perfect sizes NP = L2.The ground state is unique, i.e., ΩL2(0) = 1, and has a square

shape with no monomers and four kinks. Thus the total contribution to DN (δt→ 0) from
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the ground state is of order hk/N
2, denoted O(hk/N

2). There are 4× (4L− 2) first excited

states where an atom is shifted from one of the four corners of the ground state and placed

as a monomer on an edge, and 2× 4L first excited states with a monomer on an edge of a

(L− 1)× (L+ 1) rectangle. Thus the total number of first excited states with a monomer

is Ω′L2(1) = (24L/8). The total contribution to DN (δt→ 0) from these states is dominated

by monomer hopping and is O(Ω′L2(1)he exp [−φ/(kBT )] /N2) = O(Lhk/N
2), which exceeds

the contribution from the ground state.

The great majority of the ΩL2(1) first excited states have no monomers, but many kinks.

If nL2,k(1) denotes the number of kinks in such states, then one has that 3 ≤ nL2,k(1) ≤ 2(1+

√
2L+ 1) (see Appendix B). Despite the penalty of a Boltzmann factor of exp [−φ/(kBT )],

the total contribution of kinks in first excited states,O(nL2,k(1)ΩL2(1)hk exp [−φ/(kBT )] /N2),

becomes comparable to those above for moderate N due to the large number of first excited

states ΩL2(1). Specifically, the contribution becomes comparable when ΩL2(1) exp [φ/(kBT )] ∼

O(1), which occurs when N ∼ 49 (81) for φ = 0.20eV (φ = 0.24eV) (see Appendix C).

Finally, we find that it is also necessary to consider contributions from the subclass

of second excited states, which include a monomer. We note that the number of such

states, Ω′L2(2) ∼ 4LΩL2−1(1) (see Appendix D for a more precise analysis) is somewhat

larger than ΩL2(1) for N ∼ O(102). The total contribution of such states is of order

O(Ω′L2(2)he exp [−2φ/(kBT )] /N2), which is of the same order as the above contributions

for moderate cluster sizes if one accounts for this large Ω′L2(2) and for the high monomer

hop rate he. Combining these four types of contributions (of which the last one dominates

for moderate N) yields estimates for DN (δt → 0) close to simulation values as shown in

Fig. 2.12 for heδt = 1,φ = 0.20eV.

It is appropriate to note that the contributions explicitly included above correspond to

exactly the configurations that arise in our picture of nucleation-mediated cluster diffusion

for moderate sizes. The cluster primarily exists in the ground state, but must access first

excited states in order to initiate motion. However, transitions between the numerous
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Figure 2.12: Estimated upper and lower bounds of DN (δt → 0) vs simulation results for

heδt = 1 (black dots) for N = L2 (inset N = L2 + 1) for φ = 0.20eV and δ = 0 at 300K.

monomer-free first excited states involve second excited states with a monomer. We note

that contributions from second excited states without a monomer and higher excited states

are of lower order than those above since the number of relevant configurations is not

substantially greater than ΩL2(1) or Ω′L2(2).

Facile clusters of sizes N = L2 + 1. Here, we mimic the above analysis for perfect

clusters. For N = L2 + 1, there are 4L ground states with a monomer, i.e., Ω′L2+1(0) = 4L,

each of which provide a contribution O(heΩ
′
L2+1(0)) ∼ O(he) dominated by monomer

hopping. All ground states contribute by kink hopping with total contribution of order

O(nL2+1,k(0)hkΩL2+1(0)) ∼ O(he) for N ≥ 65 (101) with φ = 0.20eV (0.24eV), using the

feature that ΩL2+1(0) grows far more quickly than Ω′L2+1(0). Note also that nL2+1,k(0) ≤

2(1+
√

2L− 1) (see Appendix B). The third contribution comes from the first excited states

with a monomer, where the number of such states satisfies Ω′L2+1(1) ∼ 4LΩL2(1) (see Ap-

pendix D for a more precise analysis). Thus the total contribution of first excited states
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is O(heΩ
′
L2+1(1) exp [−φ/(kBT )]) ∼ O(he), due to the large number of states considered,

O(Ω′L2+1(1) exp [−φ/(kBT )]) ∼ O(1) for N ≥ 65 (101) with φ = 0.20eV (0.24eV). Com-

bining these three contributions yields estimates for DN (δt→ 0) close to simulation values

[see Fig. 2.12 (inset) for heδt = 1, φ = 0.20eV]. Note that the states explicitly included

above are exactly those in our picture of facile diffusion for moderate sized clusters, and

other states have a lower order contribution.

Other cases and further comparison. The above analysis readily extends to other cases.

For the nucleation-mediated cases, N = Np + n with n = 3, 4, ..., nmax, we claim that

DN (δt → 0) will decrease from a local maximum for N = Np + 3 to a local minimum

for N = Np + np (corresponding to perfect clusters). Clusters within this class for N =

Np+3 have the highest ground-state degeneracy and importantly also the highest number of

kinks. Consequently, the contribution from the ground states O(nL2+3,k(0)hkΩL2+3(0)) for

N = Np+3 will exceed that for perfect clusters due to the substantial number of kink sites,

nL2+3,k(0) ≤ 2(2+
√

(2L−5)). The larger factor ΩL2+3(0) versus ΩL2+np
(0) = 1 does not in

itself boost DN (δ → 0), as this factor also appears in the partition function denominator of

(2.2). For N = Np+n, as n increases from 3 towards np, the degeneracy of the ground-state

and importantly the typical number of kinks decreases. Correspondingly, DN (δt→ 0) also

decreases with increasing n = 3, 4, .... Finally, comparing the above analysis for perfect and

facile clusters shows that DN (δt→ 0) for perfect clusters is smaller roughly by a Boltzmann

factor of exp [−φ/(kBT )] than for facile clusters.

2.5.2 Further analysis of back correlation

The substantial characteristic time δtc, associated with the transient short-time diffusion

behavior of DN (δt), is evident from Fig. 2.11. These data suggest heδtc ∼ 105 − 106

(106 − 107) for φ = 0.20 (0.24eV) at 300K, at least for nucleation-mediated (NM) cluster

diffusion, where the branch with N = Np+3 appears to have a larger δtc than for N = Np+n

with n > 3. This latter feature is confirmed by a suitably rescaled version of Fig. 2.11,
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which is shown in Ref. [49]. It is reasonable to expect that for NM diffusion,δtc should

reflect the characteristic time δtnuc = 1/knuc to nucleate a dimer on an outer edge. This

implies that heδtc ∼ heδtnuc ∼ exp [+2φ/(kBT )] ∼ 106.4 (108.0) for φ = 0.20 (0.24eV) at

300K with δ = 0. These crude estimates at least roughly reflect those from Fig. 2.11, and

also the feature that δtc increases with φ. The larger δtc for N = Np + 3 plausibly reflects

the larger degeneracy of the ground state and the larger typical number of kinks for that

cluster size (see Sec. 2.7), which can inhibit nucleation of new outer edges.

For facile clusters with N = Np + 1 or N = Np + 2, Fig. 2.11 perhaps suggests a

somewhat shorter δtc although this is not evident in the further rescaled plots in Ref. [49].

One might expect a shorter δtc based upon the feature that nucleation is not needed so

correspondingly Eeff is lower, and the long-time diffusion coefficient is higher. However,

other factors, such as the high degeneracy of the ground state (see Sec. 2.7), no doubt play

a role in determining δtc.

As noted previously, assessment of transient behavior in DN (δt) is essential for precise

determination of DN , where precise determination becomes more demanding for longer δtc.

Thus, accurate treatment of the case N = Np + 3 is most demanding, failure to do so

leads to a distorted representation of the cyclical behavior of DN versus N (see Sec. 2.7).

Practically, we initially estimate that the plateau in DN (δtc) is achieved for δt� δ∗, where
〈

[δr(δt∗)]2
〉

is of the order of a2 (where δt∗ gives a measure of δtc). The total length of

the trajectories used to determine DN is tmax ∼ 35000δt∗ where data is collected only for

δt� δt∗. (For reference, choosing Ee = 0.29eV eV and ν = 101.25s−1 for Ag/Ag(100) yields

he = 107.6s−1 at 300K, and tmax ∼ 70000s for N = 59.)

Finally, we elaborate on the interpretation of the decrease of DN (δt) to a plateau value

as corresponding to a back correlation in the walk of the cluster. Consider the canonical

model of a correlated walk with hops to NN sites on a lattice at total rate h. If rj denotes

the displacement of the jth hop, then the displacement of the jth hop is correlated to

that of previous hops as quantified by A(k) = 〈rj · rj−k〉 / 〈r1 · r1〉, where A(k) < 0 for
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back correlation. Here 〈rj · rj〉 / 〈r1 · r1〉 for all j. Adapting results for the time-dependent

diffusion coefficient D(δt) for this system into a continuous-time framework for a large

number of hops yields

D(δt)/D(δt→ 0) = 1 + 2

∫

0≤u≤hδt
duA(u), so that

A(hδt) =
1

2
d/ds [D(s)/D(0)] |s=hδt, (2.3)

Note that the magnitude of cumulative (integrated) correlation is strictly bounded by 1/2

in this formulation. Clearly, the decrease in DN (δt) with increasing δt shown in Fig. 2.11

corresponds to back-correlation DN (δt). One could extract an effective A(u) < 0 from the

form of A(u) after assigning an effective total hop rate.

2.6 Further Analysis of Diffusivity via Configuration Counting

Deeper insight into the diverse aspects of cluster diffusion behavior described in Sec.

2.4 follows from exploiting results of a combinatorial analysis of cluster configurations cor-

responding to ground states and first excited states. This nontrivial analysis utilizes results

related to (number theoretic) partitions of integers. Details are relegated to Appendix C.

2.6.1 Anomalous scaling for facile clusters

As noted in Sec. 2.4, for facile Np + 1 clusters, one finds initially high values and rapid

decay of DN ∼ N−βf with large βf ≈ 2.3 (βf ≈ 2.6) up to N ∼ 82 (101) for φ = 0.20

(0.24) eV at 300K. These exponent values are far larger than any reported in previous

studies. To elucidate this behavior, recall that long-range diffusion requires that the cluster

repeatedly passes through a special configuration with one edge atom on a perfect core. We

suggest that the behavior of DN reflects the possibility to wander through a large number of

isoenergetic ground-state configurations far removed from the special configuration, where

the number ΩN (0) of these states increases rapidly with increasing N . After the system

leaves the special configuration, let tret denote the mean-time for the system to return, where
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Table 2.1: Number of isoenergetic ground-state configurations ΩN (0) and restricted isoen-

ergetic configurations Ω∗N (0) for N = L2 + 1.

N = L2 + 1 10 17 26 37 50 65 82 101

ΩN (0) 28 80 210 504 1148 2480 5160 10360

Ω∗N (0) 28 80 202 464 988 1976 3748 6792

one expects that DN ∼ a2/tret. A key result of Montroll and Weiss [50] for regular lattices

is that this return time is directly proportional to the size of the system, independent of

dimension. This in turn suggests that DN ∼ a2hc/ΩN (0). The results presented in Table

2.1 indicate that ΩN (0) ∼ Nα with α ≈ 2.6 up to N ∼ 100, reasonably consistent with the

above large βf values (see Appendix C).

For another perspective, note that all isoenergetic states have equal population. Thus

the probability Pret that the system is in a ground state, which can directly transition to

(or “return to”) the special configuration, scales like Ptextret ∼ 1/Omega(0). Then, we

claim that DN ∼ a2hcPret, which recovers the above result.

The exact behavior of DN actually depends not just on the number of isoenergetic con-

figurations, but on their connectivity to the special configuration [30,32]. Presumably, con-

figurations more closely connected to the special configuration should play a more significant

role. This motivates analysis of the number Ω∗N (0) of restricted isoenergetic configurations

where starting from the special configuration, additional atoms are shifted to the edge with

the isolated atom from just the outermost layer of the other edges. Analysis of Ω∗N (0) data

also in Table I produces a modified exponent of α ≈ 2.4, again reasonably consistent with

the βf values.

2.6.2 Intermingling of perfect and facile branches

While DN for facile clusters decreases strongly with N for moderate sizes, the variation

of DN for perfect clusters is extremely weak. The latter behavior reflects the feature that

diffusion of perfect clusters is largely controlled by the nucleation step, which depends
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weakly on N , and not so much on the subsequent transfer of atoms to complete the new

edge. Thus the DN in the facile branch, which are large for smaller sizes but rapidly

decreasing naturally meet and “intermingle” with the DN of the perfect branch, which are

lower for small sizes but slowly decreasing. Since DN for the Np + 3 branch are even lower

than for perfect clusters and decrease with increasing N , this branch remains separate from

the facile and perfect clusters at the point of intermingling.

The distinction between perfect clusters and facile (or other) classes of clusters is pred-

icated on the feature that the former primarily exist in their ground states. However,

perfect Np clusters would have a significant probability of being in the first excited state

when ΩNp(1)/ΩNp(0) ≈ ΩNp(1) ≈ exp [φ/(kBT )], where again ΩN (n) gives the number of

isoconfigurations for the nth excited state for a cluster of size N , and ΩNp(0) = 1. Results

for ΩNp(1) determined from combinatorial analysis in Appendix C are reported in Table

2.2. For φ = 0.20eV (0.24eV)), the Boltzmann factor exp [φ/(kBT )] 2290 (10730), and thus

intermingling perfect and facile branches should occur around N = Nmingle ∼ 49 (81). This

prediction is consistent with the behavior shown in Fig. 2.13 where Nmingle is indicated by

a dashed vertical line. Note that DN for perfect (facile) clusters decreases more quickly

(slowly) after intermingling.

Table 2.2: Values of ΩNp(1) for Np = L2.

N = L2 26 36 49 64 81 100

ΩNp(1) 496 1140 2472 5152 10352 20208

2.6.3 Mingling of all branches of cluster diffusivity

As noted above, the feature that DN for the Np + 3 branch are lower than those for

perfect clusters and also that they decrease slowly with N delays merging with the perfect

and facile branches. It is appropriate to note that while both Np+1 and Np+3 branches have

a high ground-state degeneracy, this only produces strong size dependence of DN for the

former. Why? Long-range diffusion of clusters for sizes Np + 3 does not require repeatedly
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Figure 2.13: The intermingling sizes of L2 and L2 + 1 branches predicted with thermody-

namics for φ = 0.20eV (inset: φ = 0.24eV) with δ = 0 at 300K.

passing through a single special configuration, unlike for Np + 1. Thus the strong increase

in the number of ground states with increasing N does not induce a strong reduction in DN

for N +Np + 3.

Analogous to our assessment of intermingling and perfect branches, here we argue that

the distinctive nature of Np + 3 clusters (relative to Np + 1) is lost when the ratio of the

number of the first excited states ΩNp+3(1) to the number of ground states ΩNp+3(0) satisfies

ΩNp+3(1)/ΩNp+3(0) ≈ exp [φ/(kBT )]. The method to count the number of isoenergetic

states, ΩNp+3(1), ΩNp+3(0) is the same as that of counting ΩNp(1). Relevant results are

presented in Table 2.3 (see Appendix C for details). The predicted sizes for merging,

N = Nmerge ≈ 199 (403) for φ = 0.20eV (φ = 0.24eV), are indicated by dashed vertical

lines in Fig. 2.14.

Table 2.3: Values of ΩNp+3(0), ΩNp+3(1) and the ratio ΩNp+3(1)/ΩNp+3(0) for Np = L2 +3.

N = L2 + 3 147 172 199 327 364 403

ΩNp+3(0) 10360 20216 38416 407968 706034 1.20× 106

ΩNp+3(1) 1.53× 107 3.95× 107 9.86× 107 2.86× 109 6.25× 109 1.34× 1010
ΩNp+3(1)

ΩNp+3(0) 1475 1955 2565 7002 8847 11116
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Figure 2.14: The intermingling sizes of L2 + 3 and L × (L + 1) branches predicted with

thermodynamics for φ = 0.20eV (inset: φ = 0.24eV) with δ = 0 at 300K.

2.6.4 Analysis of the cyclical variation of cluster diffusivity

It is clear from Fig. 2.5 that DN actually increases with increasing size N = Np + n,

within each cycle n = 3, 4, 5, ..., nmax, where nmax = L for Np = L2 or (L − 1)L recovers a

perfect cluster. A local minimum (maximum) in DN occurs for the n = 3 (n = nmax+1). We

suggest that the key feature controlling this behavior is a strong decrease with increasing

n in the degeneracy of the ground state from a maximum for n = 3 to a minimum for

n = nmax. The minimum is 1 for Np = L2, and 4 for Np = (L − 1)L. A larger number of

degenerate ground states means a higher probability that the cluster is in a configuration

with multiple atoms removed from the corners and thus many kink sites which can trap

diffusing edge atoms. This makes nucleation of a new outer edge more difficult, as the

lifetime of isolated atoms is reduced). Many kinks also inhibit transfer atoms to complete

that new outer edge. Consequently, DNp+n increases with increasing n. We remark that

oscillations in DN versus N were observed in previous simulation studies [7,9]. However, the

analysis was limited [9], e.g., perhaps giving a misimpression that perfect clusters N = Np

diffuse slowest, and not recognizing that N = Np + 2 (as well as Np + 1) are facile.

Finally, we emphasize the substantial computational challenge in obtaining precise values

for DN particularly for N = Np + 3 or Np + 4. This is evident from Fig. 2.11 where one
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must sample over substantially longer time intervals δt to obtain the correct asymptotic

value of DN . Lack of precision in analysis fails to produce the correct trend in DN within

each cycle. To illustrate this issue, in Fig. 2.15, we present results obtained for DN (δt

with a small heδt = 811 and with a large heδt = 12970 for φ = 0.20eV and δ = 0 at

300K (both well below heδtc = 105 − 106). Even the latter is insufficiently large to recover

the correct asymptotic behavior. Such analysis gives the misimpression that the slowest

diffusion occurs not for N = Np + n with n = 3, but for somewhat larger n.

Figure 2.15: Illustration of analysis with diffusion coefficients not converged for φ = 0.20eV

with δ = 0 at 300K for 31 ≤ N ≤ 36.

2.7 Conclusions

Our precise KMC analysis of a tailored but effective model for cluster diffusion on metal

(100) surfaces has revealed extraordinarily diverse behavior particularly for the regime of

moderates sizes 9 ≤ N ≤ O(102). Perhaps unexpectedly, the slowest diffusion does not

occur for perfect sizes N = Np = L2 or L(L+ 1) with unique square or near-square ground-

state shapes, but rather for N = Np + 3. However, the slowest short-time diffusivity does

occur for perfect sizes. We are able to elucidate the distinct behavior of different branches

(facile, perfect, and slow) in this regime, exploiting combinatorial analysis of the number of
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ground states, first excited states, etc.

Also of interest is the intermingling and merging of these branches for larger N . Com-

binatorial analysis was also utilized to provide insight into the intermingling and merging

points essentially by determining at what cluster size thermal fluctuations or excitations

smeared the distinction between various branches. As an aside, we note that another way

to assess merging is based on the realization that the effective Arrhenius energy Eeff for

cluster diffusion adopts a higher value, Eeff = Ee+2φ+ δ, for nucleation-mediated diffusion

for moderate sizes than in the asymptotic regime of large sizes where Eeff = Ee + φ + δ.

We have checked that for nucleation-mediated diffusion, the effective value of Eeff decreases

with increasing N and is reduced to about Eeff = Ee + 1.5φ+ δ at the point where merging

occurs (see Ref. [49]).

We have not presented a comparison with experimental data. However, our results are

particularly valuable in revealing the complexity of behavior for moderate sizes and the

potential shortcomings in extracting size scaling exponents from data over a limited size

range. We plan to apply our modeling to analyze the behavior for Ag clusters on Ag(100)

where recent experimental analysis [3] has suggested somewhat lower exponent values from

those determined previously [2] (but where in both cases the exponent is significantly below

the classic value of β = 3/2). Also, with regard to experiment, we note that facile clusters of

size N = Np+1 should be susceptible to dissociation of the isolated edge atom in the special

ground-state configuration with this atom and a perfect core. However, this is only one of

many isoenergetic ground states for larger N reducing this likelihood. For N = Np + 2,

there are no isolated edge atoms in the ground state, so this issue does not arise.

Finally, we note that basic features of results from our modeling should be more general

than for cluster diffusion on metal (100) surfaces. Similar behavior is expected for metal

(111) surfaces. The surprising feature that perfect clusters do not have the lowest diffusivity

may even extend to supported 3D clusters. However, there are certainly other fundamental

issues that remain to be addressed. For example, the degeneracy of the ground state
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is important in explaining various basic features of behavior. However, if one includes

more lateral adatom interactions, degeneracies can be broken, so how does this change the

behavior from that of our basic model?
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2.9 Appendix A: Exact Analysis for the Small Cluster Size Regime

N < 9

Exploiting the exact master equation analysis discussed in the text, for dimers with two

linear configurations (rotated by 90o), one finds that [32]

D2 = D2(δt) = (a2/2)hr so Eeff = Ee + δ, (2.4)

For trimers with six distinct configurations (two linear and four bent), D3(δt) generally

decreases with increasing δt to its asymptotic value [32]

D3 = (a2/3)hrhe/(hr + he) so 1/D3 = 3a−2(1/hr + 1/he). (2.5)

The latter expression confirms the obvious feature that both edge diffusion and corner

rounding are required for long-range diffusion. In this case, one does not in general have

perfect Arrhenius behavior except for δ = 0, where Eeff = Ee. However, in practice, for

typical nonzero δ, one has that Eeff = Ee+δ. For tetramers with 19 distinct configurations,
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D4(δt) generally decreases with increasing δt to its asymptotic value

D4 =hchr
[
6(he)

3 + 38(he)
2hr + 35he(hr)

2 + 6(hr)
3
]
/

{
(18hc + hr)

[
(he)

3 + 10(he)
2hr + 24he(hr)

2 + 9(hr)
3
]}
. (2.6)

As expected, this result shows that core breakup is essential for long-range cluster diffusion.

For typical values of parameters with nonzero δ, the effective barrier is given by Eeff =

Ee + φ+ δ.

Previous analysis [32] also exploited the possibility of simplified (dimensionally reduced)

analysis in the limit as he →∞ where various configurations convert infinitely quickly be-

tween each other and may be grouped into a smaller set of quasiconfigurations. For the

trimer, there are two quasiconfigurations (two linear and a single quasibent configuration),

and the above result reduces to D2 = (a2/3)/hr. For tetramers, there are five quasiconfig-

urations, and the above result reduces to

D4 = 6a2hchr/(18hc + hr), so that

1/D4 = (a−2/6)(1/hc + 18/hr) (2.7)

Results are also available for pentamers.

2.10 Appendix B: Estimating the Number of Kinks nk in Cluster

Configurations

Here, we obtain bounds on the number of kinks nk for various cluster configurations.

The lower bound can readily be determined for specific cases, and is O(1). Thus we focus on

estimating the upper bound in this section. First, consider removing m1 atoms from a single

corner of an otherwise perfect rectangular cluster. The number of kinks nk is maximized if

the atoms are removed to create a vacancy region as close as possible to a triangle with a

45o diagonal (corresponding to a perfect staircase of kinks each of height a). This can be

achieved exactly if m1 = 1+2+ ...+(nk−1) = 1
2nk(nk−1), so that nk = (1+

√
1 + 8m1)/2.
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Next, consider removing mi atoms from the ith corner of a perfect rectangular cluster

where m1 +m2 +m3 +m4 = m, and where m is less than either side length of the rectangle.

Then, since the above expression for nk with atoms removed from a single corner increases

sublinearly with m1, it follows that the total number of kinks can be maximized by removing

roughly equal numbers of kinks from all corners, i.e., m1 ≈ m2 ≈ m3 ≈ m4 ≈ m/4.

Consequently, for an upper bound on the total number of kinks nk, we replace m1 by m/4

in the above expression and multiply by 4 to obtain nk ≤ 2(1 +
√

1 + 2m). Considering the

quantities relevant for the analysis of Sec. 2.4, we have that m = L for nL2,k(1), m = L− 1

for nL2+1,k(0), and m = L− 3 for nL2+3,k(0).

2.11 Appendix C: Counting of Isoenergetic Cluster Configurations

In our representation of clusters as collections of atoms, themselves represented as con-

tiguous red squares, the energy of the cluster corresponds to its perimeter length. Consider

the cluster shapes that are obtained by starting with a fully populated rectangle and then

removing atoms from each corner of the cluster to form a simple “staircase” (i.e., steps at

each corner are of one sign, not both). Then, the energy of these configurations is deter-

mined exactly by the perimeter length of the smallest rectangle inscribing these clusters

(which corresponds to the original rectangle from which atoms were removed). This follows

since the perimeter length of the inscribing rectangle and the actual cluster are equal. These

observations will be useful in the following analysis.

First, we consider ground-state configurations, which have the minimum perimeter

length for the prescribed number, N , of atoms. For ground states, the inscribing rectangle

is either a Li × Li square of occupied sites, or a near-square Li × (Li + 1) or Li × (Li + 2)

rectangle. The unique ground state for N = L2 is inscribed by a square with Li = L. The

ground states for N = L2 + m with 1 ≤ m ≤ L are inscribed by a Li × (Li + 1) rectangle

with Li = L. The ground states for N = L(L+ 1) with 1 ≤ m ≤ L are inscribed by Li×Li
squares with Li = L+ 1 or by Li × (Li + 2) rectangles with Li = L. Next, we consider nth
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excited state configurations where the perimeter length of the cluster is increased relative

to the ground state by an amount 2n (in units of lattice constant a = 1). Thus the size of

the inscribing rectangle must also be increased. Specifically, the side lengths are increased

by amounts nx and ny, where nx + ny = n to achieve the desired perimeter length.

Thus, to evaluate the number of convex isoenergetic nth excited state configurations of

a size N cluster ΩN (n), first, one determines the different possible inscribing rectangles for

the ground states. Second, one expands the side lengths of these rectangles by amounts nx

and ny, where nx + ny = n. Third, regarding all sites in this larger inscribing rectangle

as initially populated, one considers all possible ways to remove the appropriate number of

atoms from the four corners of the rectangle (making sure the cluster is touching all four

edges of the rectangular frame), until the final number of atoms matches the cluster size

N , which we are targeting. It is instructive to provide a few examples: (i) determination of

ΩL2+3(0) requires counting different possible ways to remove L−3 atoms from an L×(L+1)

inscribing rectangle; (ii) determination of ΩL2(1) requires counting different possible ways

to remove L atoms from an L × (L + 1) inscribing rectangle; and (iii) determination of

ΩL2+3(1) requires counting different possible ways to remove L− 3 atoms from L× (L+ 2)

and (L+ 1)× (L+ 1) inscribing rectangles.

Now, we describe in detail a systematic procedure to count the number of ways of remov-

ing the appropriate number of atoms from the inscribing rectangle. We start by considering

removal of m1 atoms from one fully populated corner. The number of possibilities is identi-

cal to the number of Young or Ferrers diagrams that represents integer partition of m1. In

number theory, this integer partition is traditionally denoted by P (m1) [51]. An example

for P (m1 = 4) = 5 is shown in Fig. 2.16.

Next, we address the more complex challenge of counting the total number of con-

figurations of the cluster, where one removes m1, m2, m3 and m4 atoms from each of

the four corners of the inscribing rectangle, respectively, for a total of m atoms where

m = m1 +m2 +m3 +m4. One constraint with this analysis is that removal of atoms from
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Figure 2.16: Number P (m1 = 4) = 5 of possible ways to remove m1 = 4 atoms from a

corner illustrated by Ferrers diagrams. Partitions of 4 into strings of integers indicate the

number of atoms removed from each row starting with the top row.

one corner does not interfere with removal from other corners, which requires that m is no

larger than the side lengths of the inscribing rectangle. (We will comment further below on

cases where this condition is not satisfied.) Subject to this constraint, the total number of

configurations comes from considering the product of the corresponding integer partions,

and then summing over all possible choices of mi consistent with the constraint on the sum

(and finally adjusting for any overcounting).

An example for ΩL2(1) is shown below where m = L atoms are removed from an

inscribing L× (L+ 1) rectangle.

Here, one has

ΩL2(1) = 2×
∑

m1+m2+m3+m4

P (m1)P (m2)P (m3)P (m4)− (over counting)

= 2×
L∑

mL=0




mL∑

ml=0

P (ml)P (mL −ml)

L=mL∑

mr=0

P (L−mL −mr)


 (2.8)

− (over counting).
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In the second sum, mL(mR) gives the total number of atoms removed from the left (right)

side on the inscribing rectangle, and ml(mr) give the number of atoms removed from one

corner on the left (right) side. The factor of 2 comes from a 90o rotation of the L× (L+ 1)

rectangle, correponding to another set of discrete states. Note that “overcounting” in (2.8)

includes the ground state being counted four times (mL = L and ml = 0 or L) or (mL = 0

and mr = 0 or L). If one wishes to consider just first excited states without any monomers,

then it is also necessary to subtract 4 × (4L − 2) states where an atom is shifted from a

corner of the L×L ground-state configuration and placed on a side. One must also subtract

4L configurations with a monomer on the edge of a completely populated (L− 1)× (L+ 1)

rectangle.

In addition, we have analyzed ΩL2+1(0) and ΩL2+3(0), where L − 1 and L − 3 atoms

are removed from an L × (L + 1) inscribing rectangle, respectively. In these cases, the

procedure described above is directly applicable. Finally, we have also analyzed ΩL2+3(1),

where 2L−3 atoms are removed from L× (L+ 2) or (L+ 1)× (L+ 1) inscribing rectangles.

In this case, since the number of removed atoms significantly exceeds side lengths of the

inscribing rectangle, significant modification is required from the formulation (2.8) used to

obtain ΩL2(1) and other quantities mentioned above.

Results reported in the text for ΩL2(1), ΩL2+1(0), and ΩL2+3(0) include all states, i.e.,

those with monomers and those without. (See Ref. [49] for corresponding results excluding

states with monomers.)

2.12 Appendix D: Counting of Excited State Configurations with One

Monomer

In Sec. 2.5, we estimated number of configurations, Ω′N (n), of clusters with N atoms

corresponding to nth excited state, which include a single monomer. In some cases, this

analysis was simple, e.g.,Ω′L2+1(0) = 4L. However, analysis of other cases including Ω′L2(2)

and Ω′L2+1(1) is nontrivial, and is thus described in more detailed below.
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To estimate Ω′N (n), we first remove the monomer, and then count the number of states

ΩN−1(n−1 or n), where the appropriate choice is discussed below. For the latter, we utilize

the scheme introduced in Appendix C. Next, let nf denote the number of empty edge sites

nf with only one neighbor, which could thus accommodate a monomer. Then, it follows

that

Ω′N (n) = nf × ΩN−1(n− 1 or n) (2.9)

To determine nf , we note that each kink roughly contributes two units of perimeter; it

follows that the total perimeter length for clusters of size N − 1 in the (n − 1)th excited

state is given by the sum nf + 2nN−1,k(n− 1), where nN−1,k(n− 1) denotes the number of

kinks in these clusters (see Appendix B).

To determine Ω′L2(2), we note that first excited states for clusters of size N = L2 have

configurations within a L × (L + 1) inscribing rectangle. For second excited states with a

single monomer, this monomer is located at the perimeter of a cluster of size L2 − 1 with

no monomers, but still with an L× (L+ 1) inscribing rectangle and which thus corresponds

to a first excited state (see Fig. 2.17 for an example). Thus, one has that

Ω′L2(2) ≈ ΩL2−1(1)
[
4L+ 2− 2nL2−1,k(1)

]
. (2.10)

To determine Ω′L2+1(1), we note that ground states for clusters with size N = L2 + 1 have

configurations within a L×(L+1) inscribing rectangle. For first excited states with a single

monomer, this monomer is located at the perimeter of a cluster of size L2 with no monomers,

but still with an L× (L+ 1) inscribing rectangle. The latter thus also corresponds to a first

excited state. In conclusion, one has that

Ω′L2+1(1) ≈ ΩL2(1)
[
4L+ 2− 2nL2,k(1)

]
. (2.11)
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Figure 2.17: Example of an excited state with one monomer.

2.13 Supplementary Material

The Supplementary Material file contains plots with additional results from KMC sim-

ulations augmenting the main results presented in the text, details of our combinatorial

analysis, and also table of values of diffusion coefficients.
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Abstract

Diffusion coefficients, DN , for 2D vacancy nanopits are compared with those for 2D

homoepitaxial adatom nanoislands on metal(100) surfaces, focusing on the variation of DN

with size, N . Here, N is measured in missing atoms for pits and adatoms for islands.

Analysis of DN is based on kinetic Monte Carlo simulations of a tailored stochastic lattice-

gas model, where pit and island diffusion are mediated by periphery diffusion, i.e., by edge

atom hopping. Precise determination of DN versus N for typical parameters reveals a
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cyclical variation with an overall decrease in magnitude for increasing moderate O(102) ≤

N ≤ O(103). Monotonic decay, DN ∼ N−β, is found for N ≥ O(102) with effective

exponents, β = βeff, for both pits and islands, both well below the macroscopic value of

βmacro = 3/2. DN values for vacancy pits are significantly lower (higher) than for adatom

islands for moderate N in the case of low (high) kink rounding barrier. However, DN values

for pits and islands slowly merge, and βeff → 3/2 for sufficiently large N . The latter feature

is expected from continuum Langevin formulations appropriate for large sizes. We compare

predictions from our model incorporating appropriate energetic parameters for Ag(100) with

different sets of experimental data for diffusivity at 300K, including assessment of βeff, for

experimentally observed sizes N from ∼ 100 to ∼ 1000.

DOI: 10.1021/acs.jpcc.7b12527

3.1 Introduction

Scanning tunneling microscopy (STM) studies going back to the mid-1990s of the dif-

fusion of large single-layer-high homoepitaxial adatom islands on metal(100) surfaces [1–4]

have received extensive attention. We refer to these islands as two-dimensional (2D). The

experimental studies prompted numerous theoretical analyses [5–9] which supplemented

limited earlier studies. [10,11] However, relatively little attention has been paid to the cor-

responding behavior for single-layer-deep 2D vacancy pits for which STM analyses were

performed more recently. [12, 13] With reference to either islands or pits as clusters, the

default expectation is that cluster diffusion on metal(100) surfaces is mediated by periph-

ery diffusion (PD) of atoms around the edge of the cluster. For both islands and pits,

the variation of the diffusion coefficient, DN , with cluster size, N , is of particular interest.

Here, size N is measured as the number of adatoms for islands, or missing atoms for pits.

Alternatively, size can be measured by the island or pit area, A = a2N , where “a” denotes

the surface lattice constant.

Macroscopic continuum Langevin theory for PD-mediated cluster diffusion predicts that

https://doi.org/10.1021/acs.jpcc.7b12527
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DN ∼ σPDN
β with a size-scaling exponent β = βmacro = 3/2, where σPD denotes the

mesoscale mobility of atoms along the step edge bordering the cluster. [14, 15] It follows

that in this continuum treatment, the Arrhenius energy for σPD, denoted EPD, [16, 17]

should correspond to the effective barrier, Eeff, for cluster diffusion. A key observation is

that the macroscale continuum theory predicts identical behavior for islands and pits. A

simple atomistic-level mean-field type theory [18] for PD also predicts the same size-scaling

as continuum theory with β = βmacro = 3/2. However, significantly, a detailed experimental

study of homoepitaxial island diffusion on Ag(100) and Cu(100) surfaces at temperature

T ≈ 300K observed exponents, βeff ≈ 1.15 and βeff ≈ 1.25, respectively, for moderate sizes

N = O(102) to O(103). [2,3] These β values are distinctly below the continuum prediction.

From more recent experimental studies for Ag(100), a similar scenario appears to apply for

vacancy pits. [12,13] These observations prompt the current systematic theoretical analysis

of the variation of DN with N for vacancy pits, and comparison with behavior for adatom

islands.

To provide further background related to this study, we note that, in contrast to

metal(100) surfaces, there has been extensive analysis starting in the mid-1990s of vacancy

pit diffusion on metal(111) surfaces. [19,20] The initial experimental studies for Ag(111) at

T ≈ 300K suggested that βeff ≈ 1 which was interpreted as a signature of cluster diffusion

mediated by detachment of atoms from the pit perimeter, diffusion across the pit, and reat-

tachment. [19] However, subsequent studies both for Ag(111) in the range T = 279330K and

for Cu(111) in the range T = 318343K suggested a smaller βeff < 1 although with limited

statistics, and suggested that the mechanism of pit diffusion was in fact PD. [21] Motiva-

tion for this analysis came in part from the observation that coarsening of arrays of pits

on Ag(111) was mediated by cluster diffusion and coalescence, referred to as Smoluchowski

ripening (SR). [19] However, Ostwald ripening (OR) tends to dominate coarsening for va-

cancy pits on metal(100) surfaces, except for sufficiently small mean pit sizes. [4, 12, 22]

Interestingly, the opposite applies for adatom islands, i.e., OR dominates on metal(111)
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surfaces, and SR on metal(100) surfaces. [2–4,22]

Returning to our focus in the paper on modeling of cluster diffusion on metal(100)

surfaces, we note that recent theoretical studies of adatom island diffusion revealed surpris-

ingly rich behavior for moderate sizes N ≤ O(102) for realistic model parameters. [23, 24]

This behavior includes distinct edge-nucleation-mediated and facile branches of diffusion

with quite different size-scaling, and also a cyclical variation of DN with N . These distinct

branches merge, and oscillations disappear for larger sizes N ≥ O(102), but unconventional

size-scaling persists until much larger sizes N = O(103) for typical model parameters. In

the current study, we will explore the existence of analogous behavior for vacancy pits, and

compare behavior with previous results for adatom islands. However, in addition, we will

apply our models to analyze and elucidate experimental data collected by different groups

on pit and island diffusion for the Ag(100) system at 300K. This will raise additional issues

regarding the optimal comparison of simulation results with experimental observations.

In Section 3.2, a detailed description of our stochastic model is provided, as well as

a characterization of cluster diffusion processes. An overview of simulation results and an

elucidation of this behavior are presented in Section 3.3. In Section 3.4, the model is applied

to analyze experimental data for Ag(100). Conclusions are provided in Section 3.5.

3.2 Stochastic Lattice-gas Model for Cluster Diffusion

3.2.1 Model details and kMC simulation of cluster diffusion

Our tailored stochastic lattice-gas model for PD-mediated 2D epitaxial cluster diffusion

on metal(100) surfaces [25] involves hopping of adatoms within a single surface layer on

the metal(100) substrate. These adatoms reside on a square lattice of adsorption sites with

lattice constant “a”, and interact with nearest-neighbor (NN) attractive lateral interactions

of strength φ > 0. Adatoms can hop to NN empty sites, and also to second NN (2NN) empty

sites, provided that hopping retains at least one NN adatom (and with an additional mild

connectivity constraint described in the Supporting Information). All hop rates have the
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Arrhenius form h = ν exp [−Eact/(kBT )], where ν is a common attempt frequency for both

NN and 2NN hops. Let nNN denote the number of in-plane NN adatoms of the hopping

adatom in its initial configuration. Then, the activation barrier, Eact, which is selected to

be consistent with detailed balance, satisfies

Eact = Ee + (nNN − 1)φ for NN hops and

Eact = Ee + (nNN − 1)φδ for 2NN hops. (3.1)

Thus, for example, one has activation barriers of the following: Ee for hopping of atoms

along close-packed 〈110〉 step edges via NN hops; Er = Ee + δ for hopping around corners

or kinks via 2NN hops, so δ corresponds to the additional EhrlichSchwoebel or ES kink

rounding barrier; Ek = Ee + φ(Ek2 = Ee + φ + δ) for kink escape to a step edge via a

NN (2NN) hop; and Eex = Ee + 2φ(Eex2 = Ee + 2φ + δ) for extraction of an atom from

the middle of a 〈110〉 step edge via a NN (2NN) hop. Model behavior can be determined

precisely by a kinetic Monte Carlo (KMC) simulation. We utilize a standard rejection-free

Bortz type algorithm.

With regard to thermodynamics, the model is equivalent to the 2D ferromagnetic Ising

model on a square lattice. Typical experimental conditions correspond to (kBT )/φ ≈

O(10−1), far smaller than the critical value for (kBT )/φ of 0.57 below which phase sep-

aration occurs into a 2D condensed phase and a dilute 2D gas phase. [26] The condensed

phase corresponds to 2D islands (pits), and the gas phase to isolated adatoms (monovacan-

cies), for lower (higher) submonolayer coverages. An exact expression is available for the

equilibrium shape of clusters, which is the same for islands and pits, in the macroscopic

limit of large size. [27] Qualitatively, these are square clusters, but with rounded corners for

T > 0. Of particular relevance for this study is the existence of “perfect sizes” for (island

or pit) clusters, Np = L2 and Np = L(L + 1), for integer L, which have unique square or

near-square rectangular ground state shapes, respectively, at T = 0K. Note that clusters

of size N = L(L+m) with m ≥ 2 do not satisfy this nondegeneracy property. [23,24]
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For diffusion of adatom islands, the KMC simulation starts with a single 2D island

where all adatoms are connected to at least one other adatom in the island by NN bonds.

Then, the above hopping dynamics preserves NN connectivity (and thus size) of the island.

In contrast, for diffusion of vacancy pits, again starting with a single 2D vacancy pit with

NN connectivity, now “monomer” vacancies, corresponding to a single missing atom, can

detach from the pit and diffuse through the surrounding adlayer. (Of course, monomer

vacancy diffusion actually corresponds to hopping of adjacent atoms into the vacancy.)

However, the equilibrium density of such monomer vacancies, neq(vac) = exp [−2φ/(kBT )],

is generally sufficiently small that, in our finite simulation system, there are rarely any

detached vacancies. As a result, for simulations of both islands and pits, the cluster size

is effectively constant. A special case where neq(vac) deviates from the above result is

discussed below in Section 3.2.2 and the Supporting Information (SI).

Our focus is on analysis of the diffusion coefficient, DN , for clusters of various sizes N .

To this end, it is appropriate to first define an effective time-dependent diffusion coefficient,

DN (δt) = 〈[δr(δt)] 2〉 /(4δt), where δr(δt) is the displacement in the cluster geometric cen-

troid (GC) in a time interval δt, and 〈〉 is an average of data over a long trajectory. We

have also set [δr]2 = δr · δr. The GC corresponds to the center-of-mass for an adatom

island. For our model where DN (δt) ∝ a2he, one obtains that DN (δt)/DN versus heδt, and

DN/(a
2he), are independent of our choice of Ee and ν, and thus he. Note that DN (δt)

varies, and specifically decreases as δt increases, for shorter δt due to back-correlations in

the walk of the cluster GC. [1, 9, 24] However, DN (δt) plateaus for larger δt, and the con-

ventional diffusion coefficient is obtained from DN = limδt→∞DN (δt). See Figure 3.1 and

additional discussion and results in the Supporting Information. Note that the short-time

behavior is roughly inverted from the long-time behavior; i.e., perfect size pits have the

lowest diffusivity for short-time increments, and the highest for long-time increments. This

highlights the importance of accounting for these transient effects, i.e., selecting data for

sufficient large heδt, to obtain accurate values for the true long-time diffusivity. Finally,
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we will also let Eeff denote the effective Arrhenius energy associated with DN , so that

DN ∼ exp [−Eeff/(kBT )].

Figure 3.1: Variation of rescaled DN (δt) with heδt for diffusion of vacancy pits with selected

sizes N = 5356 for φ = 0.24eV with δ = 0 at 300K

Certainly, the above model is simplified both in terms of thermodynamics (i.e., lateral

adatom interactions) and kinetics (i.e., hop rates). For metal(100) systems, one generally

expects 2NN pair attractions and bent trio repulsions to be ∼ 10% of the strength of NN

interactions (and weaker longer range pair and many-body interactions also exist). [28–30]

The actual hopping dynamics in metal(100) systems is also more complicated than our

prescription, as has been determined by a comprehensive DFT analysis of energetics at

both the initial site and the transition state for hopping for general step edge configurations.

[29, 30] The prescription of the diffusion rate for isolated monomer vacancies in the above

model is too low, but this process is not important for the current study. Also, the model

will not precisely describe hopping in some configurations, e.g., for an atom sliding out of the

corner from a rectangular pit. [30] However, we claim that our simplified model captures the

basic features of these systems, and is a more effective vehicle than more complex models for

obtaining a fundamental understanding of the basic features of cluster diffusion behavior.
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3.2.2 Vacancy pit diffusion modes and energetics

Figure 3.2: Direct vacancy pit pathways for small δ or δ = 0 for sizes: (a) Np and (b)

Np + n with n = 3. Atoms in the top surface layer are denoted by small red squares, and

vacancies by small white squares. Atoms which are moved around the periphery of the

pit are denoted by darker red than those in the surrounding adlayer which are not moved.

Energy changes are indicated by ∆E. Rate-determining steps are denoted by an asterisk

under the horizontal arrow. The × indicates a fixed position on the surface.

We now illustrate the pathways for long-range diffusion of vacancy pits by movement of

atoms around the periphery of the pit, and also indicate the associated activation barriers.

Specifically, we show the steps needed to recover a prescribed initial pit shape, but with a

shifted geometric centroid. This shape recovery is a key component of long-range diffusion.

In Figure 3.2, we show typical “direct” diffusion pathways for the case of zero or small kink

rounding barrier, δ. Figure 3.2a shows such pathways for diffusion of a pit with perfect

size, N = Np = L2. We choose the initial configuration as the unique ground state, for

which the typical first step is to extract an atom from some location along one of the close-

packed straight edges of the pit. After the extracted atom is transferred to a corner of the
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pit, the system is in a first excited state corresponding to energy change ∆E = +φ. This

first rate-controlling step, indicated by an asterisk in Figure 3.2a, has the highest barrier of

Eact = Ee+2φ+δ which determines the overall or effective barrier, Eeff, for these pathways,

as all subsequent steps have a lower barrier of Eact = Ee+φ+δ. Subsequent atom transfers

evolve the system through a sequence of first excited state configurations, with the last

transfer returning the system to the ground state after an energy change ∆E = −δ.

Figure 3.2b indicates the direct diffusion pathway for small δ for a pit size of N =

Np+n = L2 +n, for integer n < L, where the rate-controlling step again involves extraction

of an atom from a straight step edge with barrier Eact = Ee+2φ+δ. However, now this step

(again indicated by an asterisk) occurs midway through the overall process. In this case,

the system evolves through a sequence of ground states (after each atom transfer) before the

above-mentioned step edge extraction process, and then through a sequence of first excited

states until the last step, which returns the system to a ground state. Similar pathways exist

for perfect sizes Np = L(L + 1) with the same barrier, Eact = Ee + 2φ, determining Eeff.

We caution that there are other pathways, described below, which avoid corner rounding

and for which naturally Eact does not involve δ. Thus, the actual effective barrier will

depend on the relative contributions of the various pathways. We also emphasize that, for

processes indicated in Figure 2, the effective barrier, Eeff, is higher than that predicted by

the continuum Langevin formulation of EPD = Ee + φ+ δ.

For a large kink rounding barrier, δ, there is a preference for pathways which avoid 2NN

kink rounding hops. Indeed, it is possible to find such pathways leading to long-range pit

diffusion. Such direct pathways are shown in Figure 3.3a for N = Np = L2, and in Figure

3.3b for N = Np + n = L2 + n. For N = Np = L2, evolution is through first excited state

configurations. For N = Np + n = L2 + n, evolution is initially through ground states

until extraction of an atom from a pit corner, and then through first excited states. The

consequences of the existence of these pathways for cluster diffusion avoiding kink rounding

will be illustrated in Section 3.3 when comparing diffusivity of adatom islands and vacancy
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pits. Analogous pathways avoiding kink rounding exist for Np = L(L + 1). The overall

barrier for all these pathways is given by Eeff = Ee + 2φ.

Figure 3.3: Prominent direct vacancy pit diffusion pathways for large δ for sizes: (a) Np

and (b) Np +n with n = 3. The format is the same as for Figure 3.2. In contrast to Figure

3.2, there are no 2NN hops of periphery atoms involved in these pathways (only NN hops).

Some other basic issues related to pit diffusion should be noted. First, in addition to the

direct pathways shown above which most efficiently recover the initial configuration with

a translated geometric centroid, there are also less efficient “indirect pathways”. In these

pathways, atoms accumulate at multiple corners of the pit. See Figure 3.4 for N = Np = L2.

This means that the system accesses a large number of degenerate first excited states for

N = Np, and of degenerate ground states and first excited states for N = Np + n. We will

show in Section 3.3 that the existence of this degeneracy is important for understanding

certain cyclical features of the size-dependence of diffusivity. Second, as indicated in Section
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3.2.1, the equilibrium density of monomer vacancies coexisting with vacancy pits is typically

given by neq(vac) = exp [−2φ/(kBT )]. This applies in simulations with a pit of size N = Np

or N = Np + n with n > 1 where the energy difference between the ground state of the

vacancy pit and the state with a detached monomer vacancy is ∆E = +2φ. However,

for size N = Np + 1, this energy difference is ∆E = +φ, so one obtains that neq(vac) =

exp [−φ/(kBT )]. See the Supporting Information for further discussion. The probability

that the system exists as a connected pit versus with a detached monomer also depends on

system size and on the degeneracy of the connected ground states. However, this probability

is negligible for all sizes but N = Np + 1. Thus, results for diffusivity when N = Np + 1 can

be impacted by this feature.

Figure 3.4: Indirect pathway for small δ for vacancy pit diffusion for size Np = L2. The

format is the same as that for Figure 3.2.

3.2.3 Adatom island diffusion modes and energetics

For adatom islands, there are two distinct modes or branches of cluster diffusion. Edge

nucleation-mediated diffusion occurs for sizes N = Np. In these cases, after an atom is

extracted from one of the corners of the ground state square or near-square configuration to

an edge, a second atom must also be quickly extracted and join the first atom before the first

atom returns to the corner. This formation of a pair of edge atoms constitutes nucleation
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of a new edge of the island. Atoms can then be transferred to complete the new edge and

recover a ground state with a translated geometric centroid (GC). This process of nucleation

of new edges is also required for adatom islands of size N = Np + n with n = 3, 4, ... In

all these cases, one can show that the effective activation energy for nucleation-mediated

cluster diffusion is given by Eeff = Ee + 2φ+ δ. In contrast, facile diffusion occurs for sizes

N = Np + 1 and N = Np + 2. Here, the nucleation of new outer edges is not necessary. For

N = Np + 1, a single atom on the edge of a perfect core can easily diffuse around the core,

and for N = Np + 2 a dimer on the edge of a perfect core can easily dissociate and re-form

on another edge. This allows facile reformation of the special configurations with a shifted

GC. However, long-range diffusion does require the cluster to repeatedly transition through

these special configurations. The effective activation energy for facile cluster diffusion is

given by Eeff = Ee + φ + δ. A detailed description of behavior for adatom island diffusion

is given in refs [23] and [24]. Again, continuum theory predicts an effective barrier, Eeff, of

EPD = Ee + φ+ δ.

3.3 KMC Results for Pit Diffusion and Comparison with Islands

3.3.1 KMC simulation results for DN versus N

The main part of Figure 3.5 gives an overview of the variation of vacancy pit diffusivity

DN with sizeN for φ = 0.20eV at T = 300K in the absence of a kink rounding barrier, δ = 0,

and also compares this behavior with that for adatom islands of N atoms. For vacancy pits

with sizes below N = O(102), we just indicate behavior for perfect sizes N = Np and sizes

N = Np + 1, as these provide local upper and lower bounds on diffusivity, respectively.

See below. For adatom islands with sizes below N = O(102), as in recent studies, [23, 24]

we just show the following: the locally maximum diffusivity for facile sizes N = Np + 1,

the moderate diffusivity for perfect sizes N = Np, and locally minimum diffusivity for sizes

N = Np + 3. It is clear that vacancy pits diffuse significantly more slowly than adatom

islands when δ = 0 for a broad range of sizes N ≤ O(103), but that gradual merging of
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diffusivities for islands and pits is apparent for larger N . Again, the latter is expected from

macroscopic continuum formulations. The inset of Figure 5 shows qualitatively similar

behavior for small kink rounding barrier δ = 0.1eV, but for a more restricted set of cluster

sizes.

Figure 3.5: Overview of KMC simulation results for DN versus N for vacancy pits (solid

symbols) and adatom islands (open symbols) for φ = 0.20eV and δ = 0 at 300K. DN is

shown only for certain special classes of sizes, often those which capture local maxima and

minima. The inset shows a more limited set of data for φ = 0.20eV and δ = 0.1eV at 300K.

For vacancy pits in the case of no kink rounding barrier, δ = 0, a more detailed analysis

reveals a cyclical variation of DN with N for moderate sizes N ≤ O(102). This behavior

is shown in Figure 3.6 for φ = 0.24eV and φ = 0.28eV at 300K focusing on a few cycles.

(Larger φ values are chosen to amplify this behavior.) The key feature which emerges is

that perfect sizes N = Np = L2 or L(L + 1) tend to correspond to local maxima in DN ,

and sizes N = Np + 1 tend to correspond to local minima. Slight deviations from this

behavior are discussed in Section 3.3.2. Despite the substantial difference in diffusivity for

these two classes of sizes, N = Np and N = Np + 1, an Arrhenius analysis reveals that the

same effective diffusion barrier, Eact = Ee + 2φ, applies in both cases, recalling that here

δ = 0. See the Supporting Information. This contrasts behavior for adatom islands where
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facile sizes N = Np + 1 have higher diffusivity than perfect sizes N = Np, and where these

two classes of sizes have different effective diffusion barriers (at least for the moderate size

regime). [23,24] We mention that identification of these oscillations either for islands or pits

in experimental data would be inhibited by uncertainties in both diffusion coefficients and

cluster size. This point is discussed further in Section 3.4.2.

Figure 3.6: Examples of cyclic variation of DN versus N for vacancy pits for (a) φ = 0.24eV

and (b) φ = 0.28eV, with δ = 0 at 300K. Indicated local maxima are mainly perfect sizes,

but disruption of this feature appears for larger sizes (·). Dashed lines are not quantitative,

but just guide the eye.

Finally, we provide a more comprehensive analysis of the variation of cluster diffusivity

with the strength of the kink rounding barrier, δ, for φ = 0.24eV at T = 300K. Figure

3.7 shows ln
[
DN/(a

2he)
]

versus δ for both vacancy pits and adatom islands for selected
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sizes N = Np and Np + 1 choosing Np = 64. For vacancy pits, increasing δ above δ = 0

results initially in a gradual smooth decrease in DN , behavior which is expected since the

overall efficiency in pathways involving corner rounding is reduced. However, for larger δ

above about 0.15eV, DN for pits tends to plateau, a feature which reflects the enhanced

contribution and ultimately the dominance of diffusion pathways avoiding corner rounding.

In contrast, DN for adatom islands starts at higher values for small δ but decreases more

quickly and persistently. This behavior for islands reflects the feature that all pathways

involve corner rounding, so one finds that DN ∼ exp [−δ/(kBT )], at least for larger δ.

Thus, while DN is smaller for vacancy pits than for adatom islands for small δ, the opposite

applies for large δ with a crossover around δ = 0.18eV for the parameter choices in Figure

3.7.

Figure 3.7: Variation of DN with δ for perfect size Np = 64 and for size Np + 1 = 65

at 300K. We also include Arrhenius fits to the data for islands for larger δ showing that

DN ∼ exp [−δ/(kBT )]

3.3.2 Further analysis of results for DN versus N

In this subsection, we elucidate various aspects of the cluster diffusivity: asymptotic

large-size behavior, cyclical behavior for moderate sizes, and finally the dependence on kink

rounding barrier.
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Asymptotic Large-Size Behavior

The continuum Langevin formulation reliably describes diffusion behavior for clusters

with sufficiently large sizes. Since this formulation predicts identical behavior for vacancy

pits and adatom islands, it follows that diffusivity for vacancy pits and adatom islands

should merge for sufficiently large sizes, where both should satisfy classic size-scaling with

β = βmacro = 3/2. Previous analysis of data for adatom islands for φ = 0.20eV and δ = 0

at 300K (using the data shown in Figure 3.5) revealed that the effective scaling exponent,

βeff, did achieve this asymptotic value of βmacro = 1.5 for N ≥ 2300. This is consistent with

the expectation that such asymptotic behavior should be achieved for linear island sizes,

L = N1/2, well above the characteristic separation of kinks on close-packed step edges, [24]

Lk = 1/2 exp [φ/(2kBT )], in units of “a”. For φ = 0.20eV at 300K, one finds that Lk ≈ 24,

so asymptotic behavior should be achieved for N well above (Lk)
2 ≈ 580. From Figure 3.5,

convergence of the effective size-scaling exponent to this asymptotic value for vacancy pits

is somewhat slower with βeff ≈ 1.32 for 2025 ≤ N ≤ 3250. Complete merging of diffusivity

for pits and islands does not occur until N = O(104), a regime not readily accessible for

precise analysis from simulations.

Cyclical Variation for Moderate Sizes

A key feature of the behavior of DN for vacancy pits shown in Section 3.3.1 is the cyclical

variation. Specifically, DN typically increases smoothly with N = Np + n for increasing

n = 1, 2, ..., nmax from a local minimum for sizes n = 1 to a local maximum at n = nmax

where N = Np + nmax recovers the next largest perfect size. For example, one finds that

nmax = L for Np = L2 or L(L1), so that Np + nmax = (L + 1)L or L2, respectively. To

elucidate this behavior, we recall that access to the first excited state is necessary for long-

range diffusion. Thus, we speculate that this cyclical increase in DN is associated with an

increased probability for the vacancy pit to be in a first excited state rather than in the

ground state. To support this speculation, it is necessary to first determine the degeneracy
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(i.e., the number of configurations), ΩN (j), associated with the jth excited state of a pit

with size N , at least for j = 0 (the ground state) and j = 1 (the first excited state). Then,

if PN (j) denotes the probability to be in the jth excited state, it follows that the relative

probability of interest is given by

PN (1)/PN (0) = exp [−φ/(kBT )]× ΩN (1)/ΩN (0). (3.2)

Results for the variation of the key ratio, ΩN (1)/ΩN (0), with N are shown in Figure 3.8.

It is clear that the strong cyclical variation of this quantity correlates with the analogous

cyclical variation of DN shown in Figure 3.6.

Figure 3.8: Plot of ΩN (1)/ΩN (0) vs N with N = 21− 121.

Determination of the results shown in Figure 3.8 for configurational degeneracy requires

nontrivial combinatorial analysis. Our analysis considers pit configurations obtained by

starting with a perfect rectangular pit of size exceeding N , and then adding the appropriate

atoms (to reduce the size to N) to form a simple staircase in each corner. (A staircase is

a step edge with kinks of one sign, and not both.) Note that the energy of all these

configurations is simply determined by the perimeter length of the cluster (treating vacant

sites as a×a squares) which equals that of the original inscribing rectangle. If the number of

added atoms is not too large, then the configurations of different corners do not “interfere”
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with each other. As a result, the total number of configurations is readily determined

from knowledge of the number of configurations for a single corner with a specific number

of added atoms by a suitable convolution sum over different numbers of atoms added to

each of the corners. The number of configurations for a single corner can be obtained by

noting that the associated configurations can be mapped onto Young or Ferrers diagrams

associated with “partitions of integers” in number theory. [31] A more detailed description of

this combinatorial analysis is provided in the Supporting Information, and we note that the

analogous approach for the treatment of the degeneracy of island configurations is provided

in ref [24].

From Figure 3.6, it is evident that there are some deviations from ideal cyclical variation

of DN with minima (maxima) at n = 1(n = nmax). Sometimes the local minimum occurs

at n = 2 rather than n = 1, possibly due to the higher likelihood of vacancy detachment

for n = 1 (cf. Section 3.2.2). This is evident in Figure 3.6b for φ = 0.28eV and Np = 49.

In addition, the feature that the local maximum occurs at n = nmax, corresponding to a

perfect size, is disrupted for the larger sizes as is also evident in Figure 3.6a at Np = 64

when φ = 0.24eV, and in Figure 3.6b at Np = 100 when φ = 0.28eV. The disruption of

perfect cyclical behavior is expected for sufficiently large sizes because distinct branches of

behavior (e.g., for special sizes Np versus sizes Np+1, etc.) eventually merge. Such merging

is expected to create clusters having a significant probability of being in an excited state

configuration (above the T = 0K ground state). [23, 24]

As indicated above for φ = 0.28eV, such disruption wherein local maximum in DN does

not correspond to a perfect size first appears for N = 100 where DNp = 100 < DNp1 = 99.

From Table 3.1, this corresponds to PN (1)/PN (0) ∼ 0.4. (Figure 3.6b shows a stronger

disruption with DNp = 121 � DNp1 = 120 for φ = 0.28eV. Also the difference between

DNp1 = 120 and DNp2 = 119 is much smaller than between DNp1 = 99 and DNp2 = 98, a

precursor to more extensive disruption of cyclical behavior.) For φ = 0.24eV, the criterion

PN (1)/PN (0) ∼ 0.4 for the onset of disruption also applies where DNp = 64 < DNp1 = 63 as



www.manaraa.com

71

Table 3.1: PN (1)/PN (0) versus N at 300K Obtained from ΩN (1)/ΩN (0)

N φ = 0.24eV, PN (1)/PN (0) N φ = 0.28eV, PN (1)/PN (0)

55 0.117 98 0.0997

56 0.233 99 0.0189

63 0.236 100 0.401

64 0.480 119 0.183

120 0.353

121 0.762

shown in Figure 3.6a. The criterion is also consistent with the onset of disruption evident

in limited data for φ = 0.20eV shown in the Supporting Information.

Dependence on Kink Rounding Barrier

Finally, we provide brief additional comments on the δ-dependence of DN . As noted

above, behavior for adatom islands is clear as all pathways involve corner rounding, so that

one has DN ∼ exp [−δ/(kBT )], at least for larger δ. The weaker dependence for smaller δ

likely reflects the feature that in this regime the kink ES length [26] Lδ = exp [δ/(kBT )] is

significantly below other characteristic lengths such as kink separation, Lk, so then diffusion

along close-packed step edges rather than kink rounding is rate-limiting for transport around

the cluster periphery. Behavior for vacancy pits is more complicated due to a competition

between pathways with and without corner rounding. However, as noted in Section 3.3.1,

for large enough δ, pathways without kink rounding dominate and DN becomes independent

of δ. Direct assessment of the limiting plateau value for large δ is possible from analysis of

a model where 2NN hops are strictly excluded.

3.4 Analysis of Diffusivity for Pits and Islands on Ag(100)

First, we provide some further comments on the applicability of our simplified model

for the Ag(100) system with regard to equilibrium (island and pit) cluster shapes. We then

discuss the presence of fluctuations and variations in experimental cluster size, and the
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ramifications for comparison with simulation results for fixed cluster size. Finally, we apply

our model to interpret experimental observations from three different groups for cluster

diffusivity in the Ag(100) system at 300K.

3.4.1 Equilibrium cluster shapes

As noted in Section 3.2.1 for our model with just NN interactions, a complex but exact

expression is available for the equilibrium shape of clusters in the macroscopic limit of

large size. [27] This limiting shape, which is identical for pits and islands, is square but

with rounded corners for T > 0. On the other hand, for metal(100) surfaces, close-packed

〈110〉 / {111} oriented steps generally have the lowest step energy, γ〈110〉; then, 〈100〉 / {110}

oriented kinked steps have the next highest step energy, γ〈100〉, and other orientations have

significantly higher energy. Thus, it has been suggested [32] that equilibrium shapes might

reasonably be regarded as octagonal being bordered by longer 〈110〉 close-packed steps of

length L〈110〉, and shorter 〈100〉 kinked steps of length L〈100〉. The relative length of the

two types of steps is determined from the ratio of step energies, R = γ〈100〉/γ〈110〉 ≥ 1, by

solving a minimization problem for the overall step energy given a fixed cluster area. We

find that this analysis reveals a critical value of Rc =
√

2, such that if R ≥ Rc, then the

〈100〉 kinked step edges are absent, having too high an energy cost, so that the equilibrium

shape is square. An early DFT analysis [32] indicated that R = 1.20 < Rc ≈ 1.414 for

Ag(100), which implies an octagonal equilibrium shape with L〈100〉/L〈110〉 ≈ 0.3. However,

this analysis used slabs of limited thickness and sequentially determined the bulk energy,

surface energy, and step energy for Ag. Any inaccuracy in the earlier steps can lead to more

significant errors in the latter.

A more recent DFT analysis used a modified approach to avoid these issues, and found

that R = 1.39 (1.40) using the PBE (PBEsol) functional. See the SI for ref [30]. These

values are sufficiently close to Rc such that the equilibrium shape is effectively square (i.e.,

it includes no 〈100〉 kinked steps, but only 〈110〉 steps) at lower T . This supports the use
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of our tailored model for Ag(100) for which R =
√

2, and which thus also exhibits square

equilibrium shapes at lower T .

3.4.2 Fluctuations and variations in experimental cluster size

Over the time period of experimental observation of cluster motion required to determine

diffusivity (often of a few hundred minutes), there must be some fluctuation in cluster size.

In some cases, there can also be variation or drift in the mean size, but first we assume that

such drift is not present. The size fluctuations are associated with detachmentattachment

processes. Thus, the magnitude of the fluctuations reflects the magnitude of the overall

detachment rate, noting that this must balance the overall attachment rate to preserve

mean size.

For metal(100) systems, there is a separation of time scales which will serve to reduce

these fluctuations. Cluster diffusion is mediated by edge diffusion, for which high rates

reflect the low barrier for diffusion along close-packed step edges (Ee ∼ 0.250.29eV for Ag).

Detachment rates are much lower, being impacted by the much higher terrace diffusion

barrier (Ed ∼ 0.45eV for Ag). The effective rate disparity is even greater as periphery

diffusion at least for large cluster sizes is predominantly limited by atoms breaking just one

bond to escape kink sites. Consequently, in this regime, one finds that Eeff = Ee +φ+ δ, as

predicted by continuum theory. In contrast, detachment effectively requires breaking two

bonds, and has an effective barrier of Eeff = Ed+2φ (where we expect that δ is below φ). The

total detachment rate, K, must balance the total attachment rate if there is no change in

mean cluster size. Thus, one might adopt the expression K ∼ 4Lν exp [−(Ed + 2φ)/(kBT )],

where L denotes the linear size of the cluster, noting that an monomer gas of density

neq = exp [(−2φ)/(kBT )] attaches with hop rate hd = ν exp [−Ed/(kBT )] uniformly along

the cluster perimeter of length ∼ 4L. For φ = 0.27eV and ν = 1013s−1, this would yield

K ∼ 2s−1 at 300K for N = 400 and L = 20. Thus, over 100 min, there would be M ∼

12000 detachment events, and size fluctuations would be on the order ±M1/2 ∼ ±110 for
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uncorrelated detachmentattachment (i.e., large size fluctuations). However, detachment and

(re)attachment are strongly correlated in the absence of an attachment barrier of atoms or

vacancies to clusters, which is the case for metal(100) systems. As a result, size fluctuations

will be far smaller than the above estimate. Indeed, experimental observations which track

size do not reveal significant fluctuations; i.e., their magnitude is far below the estimate

above.

However, the presence of (small) size fluctuations in the experiment raises the issue of the

optimal processing of simulated DN or DN (sim) for fixed size to compare with experiment.

The natural approach takes the normalized size distribution, PN , centered on the mean

size value, Nm, during the experimental observation period, and predicts DNm(expt) from

a weighted average,
∑

N PNDN (sim). For large sizes (of relevance below) with smoothly

decreasing DN (sim) versus N , DN (expt) determined in this way is effectively identical to

DN (sim). For smaller sizes where DN (sim) oscillates with N , this process would tend to

smear out the oscillations.

In experiments by our Iowa State University (ISU) group, data used to analyze island

diffusivity was specifically selected to correspond to effectively constant size. This goal is

facilitated by the feature that island coarsening on Ag(100) is dominated by SR. [4, 12, 22]

However, for vacancy pits on Ag(100), OR tends to dominate coarsening, so there is a

greater tendency for systematic slow variation in pit size over a time period of hours: larger

(smaller) than average pits tend to grow (shrink). In this case, experimentally reported

values of diffusivity, DN (expt), naturally identify N = Nm as the mean size during the

observation period. At least for large cluster sizes, where both fluctuations in experimental

size and oscillations in DN (sim) are negligible, again it is reasonable to simply identify

experimental values of diffusivity DN = Nm(expt) with DNm(sim). See the Supporting

Information for further discussion.
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3.4.3 Model analysis of experimental observations for cluster diffusivity

We now apply our model to analyze and interpret experimental results for cluster diffu-

sivity on Ag(100). The earliest study of adatom island diffusion [1] in 1994 and a subsequent

study of pit diffusion [12] by the ISU group provided somewhat limited data with large un-

certainties. Consequently, this data cannot by itself be used to quantify size-scaling, but

it provides an assessment of the magnitude of diffusivity and is instructive when combined

with other data. The ISU data also suggested that diffusivity for islands and pits of the

same size is comparable. A particularly significant study of island (but not pit) diffusion by

the Oak Ridge National Laboratory (ORNL) group [2] in 1997 provided extensive data from

which an effective size-scaling exponent of βeff ≈ 1.15 was determined for a range of sizes

80 < N < 400. ORNL values for island diffusivity were somewhat below those from the

ISU study (for islands of the same size). A more recent study by Ge and Morgenstern [13]

(GM) for both islands and pits again indicated that these have comparable diffusivity (for

the same size), consistent with the ISU study. GM also extracted an effective exponent

βeff ≈ 0.76 below the ORNL estimate, but found values for diffusivity significantly above

both the ISU and ORNL data. These various experimental data sets are shown in Figure

3.9.

We apply the following interpretation to this somewhat inconsistent data. We propose

that the ORNL data provides the most accurate estimate for the magnitude of the island

diffusivity. Thus, the ISU values are somewhat elevated, and the GM values are significantly

elevated, relative to the true values for cluster diffusion on a perfect flat surface. This

elevation is plausibly due to intrinsic strain in the surface. Morgenstern suggested that the

heavy ion bombardment producing a surface with a high step density in the GM study could

have led to substantial strain. Indeed, it has been shown that ion bombardment can produce

nanocavities below the surface, [33, 34] the strain field from which could impact adatom

energetics on the surface. More direct evidence for the effect of strain on cluster diffusivity

was provided in a study of Smoluchoswki ripening [35] (SR) of adatom islands on Ag(100).



www.manaraa.com

76

Ripening was observed to be accelerated in a strained subregion of the surface displaying an

oblong protrusion of length ∼ 100 nm and maximum height ∼ 0.07 nm. Modeling suggested

that this acceleration in SR corresponded to a strain-induced enhancement of adatom island

diffusivity by a factor of about 5. [35]

Figure 3.9: (a) KMC simulation results for pit (island) diffusion, denoted by red solid (open)

symbols, versus cluster area, A = a2N , at T = 300K with Ee = 0.291eV, φ = 0.27eV, and

δ = 0.18eV. Red lines fit KMC data with the upper lines corresponding to pits. The blue

line fits ORNL island data for islands with βeff ≈ 1.15. The black line fits GM island and

pit data with βeff ≈ 0.76. Solid portions of lines indicate the range of available data. Solid

(open) purple symbols are ISU experimental data for pits (islands). Inset: KMC results

with Ee = 0.291eV, φ = 0.24eV, and δ = 0.233eV. (b) ORNL experimental data set for

islands. (c) GM experimental data sets for pits and islands. For Ag(100), one finds that

A = 0.0836N in nm2.

For simulation analysis of the Ag(100) system, model parameters must be chosen ap-

propriately. Recent successful modeling of the coalescence of pairs of Ag adatom islands on

Ag(100) was based on extensive DFT analysis of pair and many-body lateral adatom inter-
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actions, and also of activation barriers for periphery diffusion. [30] Using the PBEsol func-

tional, this analysis indicated that Ee = 0.291 eV, which with ν = 1013s1 yields he = 108.1s1

at 300K. This analysis also estimated that δ = 0.233eV. While many-body interactions

are non-negligible, the coalescence study concluded that, for a simplified model only in-

cluding effective NN pairwise interactions, an appropriate effective strength for these is

φ = 0.240eV. However, we should caution that additional analysis in this study(30) indi-

cated that the PBE functional predicts rather different and generally lower values for these

energies. (However, modeling with the lower PBE energies produced too rapid coalescence.)

Results for pit and island diffusivity with these parameters and ν = 1013s1 are shown in

the upper inset of Figure 3.9a. The island diffusivity is reasonably consistent with the

ORNL observations, except that the effective exponent is somewhat lower at βeff ≈ 0.89.

Pit diffusivity is substantially higher than island diffusivity with an effective exponent of

βeff ≈ 1.29. This latter feature appears inconsistent with the experimental observations

described above.

Our general analysis of model behavior in Section 3.3 indicates that since pit diffusivity

is elevated above island diffusivity choosing δ = 0.233eV above, these diffusivities will

become comparable for somewhat lower δ (and that island diffusivity would dominate that

for pits for even lower δ). Indeed, KMC results shown in the central frame of Figure 3.9

for δ = 0.18eV and φ = 0.27eV (retaining Ee = 0.291eV) with ν = 1013s1 reveal similar

values for pit and island diffusivity, which also reasonably matches the ORNL data for

islands. The corresponding effective size-scaling exponents are βeff ≈ 1.06 for islands and

βeff ≈ 1.17 for pits, also quite consistent with the ORNL data. (As an aside, our change

from the first to the second parameter set was guided by knowledge of the overall barrier of

Eact = Ee+2φ+δ for pit diffusion and for nucleation-mediated island diffusion for moderate

sizes, but Eact = Ee + φ + δ for larger sizes. This prompted our increase of φ by 0.03eV

upon decreasing δ by 0.053eV to roughly preserve Eact and thus the magnitude of island

diffusivity matching ORNL data.)
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Thus, we conclude that the modified choice of model parameters, δ = 0.18eV and

φ = 0.27eV, better describes behavior in the Ag(100) system. This choice does not exactly

match either the PBEsol or the PBE values. However, we have mentioned the significant

difference between these values, reflecting limitations in DFT analysis of energetics. It is

appropriate to note that this choice of δ is fairly consistent with a previous estimate of δ =

0.16eV (assuming that Ee = 0.25eV) from modeling of comprehensive data for multilayer

homoepitaxy on Ag(100) from 50 to 300K. [36,37] The key feature in the film growth study

was that the presence of a significant kink rounding barrier means that submonolayer islands

become irregular at lower T below 200K. [38] This contrasts their typical near-square shape

with close-packed edges at higher T . Since the EhrlichSchwoebel barrier for a kinked step

is lower than that for a close-packed step, the island shape change impacts the roughness

of multilayer films. [36,37]

3.5 Conclusions

This study has provided a comprehensive analysis of the dependence on size, N , of PD-

mediated vacancy pit diffusion, DN , on metal(100) surfaces. The analysis was based on

KMC simulation of a tailored stochastic lattice-gas model appropriate for these systems.

We find size-scaling for DN deviating from predictions of macroscopic theory for a range

of experimentally relevant sizes, N . In addition, strong cyclical variation of DN with N is

observed for sizes N ≤ O(102) for typical model parameters, where the “period” reflects

the varying size-increment between successive “perfect” cluster sizes, Np. Results are com-

pared against recent comprehensive analysis of DN versus N for adatom islands which also

exhibited anomalous size-scaling and strong oscillations. However, detailed behavior differs

for pits and islands: diffusivity is maximized for perfect sizes N = Np for pits versus facile

sizes N = Np + 1 for islands. Distinct branches of facile and nucleation-mediated diffusion

with different effective barriers for moderate sizes exist for islands, but not for pits. The

values of DN can be significantly higher (lower) for islands than for pits for large (small)
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kink rounding barriers, reflecting the feature that all pathways for island diffusion must

overcome this barrier, but not for pit diffusion.

Our analysis of pit versus island diffusion for the Ag(100) system exploits all existing

experimental data for this system. We discuss some inconsistencies in the data, but conclude

that the ORNL data provides the most accurate values for DN for adatom islands, and

that diffusivity for islands and pits of the same size are similar. On the basis of these

interpretations, our simulation model reasonably recovers experimental behavior with the

parameter choice Ee ≈ 0.29eV, δ ≈ 0.18eV, φ ≈ 0.27eV, and ν = 1013s1. Other slightly

modified choices of parameters could likely also give reasonable fits to data, e.g., selecting

somewhat lower values of both φ and ν. Finally, for the above parameter choice, we find

effective size-scaling exponents of βeff ≈ 1.06 for islands and βeff ≈ 1.17 for pits for the

relevant range of experimental sizes, quite consistent with the ORNL island diffusion data

where βeff ≈ 1.15.

3.6 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website

at DOI: 10.1021/acs.jpcc.7b12527.

Connectivity constraints in the stochastic model, equilibrium monomer vacancy popula-

tion, short-time diffusivity for pits, cyclic variation of diffusivity DN with size N for vacancy

pits, Arrhenius behavior of DN for pits, combinatorial analysis for pit configurations, tab-

ulated diffusivity for pits, and experimental observations regarding diffusing pits
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Abstract

Synthesis of nanocrystals yields polydisperse distributions, which not only implies a

distribution of nanocrystal sizes, but also of shapes. Noting that the synthesis products

often reflect kinetic effects and may not reflect minimum energy states, we propose that

the nanocrystals (gold, silver, platinum, etc.) typically used in self-assembly and directed-

assembly experiments consist predominantly of variations of single-crystal fcc truncated

octahedra with closed shells of atoms. Between each consecutive pair of “magic number”

(maximally symmetric) truncated octahedra, we identify 49 sizes with some degeneracy, for

a total of 70 distinct closed-shell configurations. Energetic and geometric features of the

nanocrystals for these special sizes are analyzed. Combining these results with previous the-

oretical models, we discuss the implications for crystal fractionalization, where polydisperse

nanocrystals spontaneously phase separate into a single and multiple binary superlattices.
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We show that under very general conditions, the binary superlattice phases follow the or-

der MgZn2, CaCu3, AlB2 and NaZn13 for increasing polydispersity. Other phases are less

frequent, but also possible.

DOI: 10.1021/acs.jpcc.9b00146

4.1 Introduction

Common metals such as gold, silver, copper, platinum, or palladium with bulk fcc

structure can self-assembly into single-crystal fcc nanoclusters or nanocrystals (NCs). Ex-

perimental techniques are available for generating large quantities of such NCs with di-

ameters of a few nanometers, as described, for example, in Ref. [1–7]. The outcome of

all these methods is a distribution of NCs with average diameter 〈D〉 and standard devi-

ation σ such that polydispersity δ ≡ σ/〈D〉 varies from 0.01 to 0.25 (i.e., 1 − 25%). This

polydispersity plays a significant role in NC self-assembly [8–13]. Recent experimental and

theoretical work [14,15] has revealed crystal fractionalization, where polydisperse NCs crys-

tallize into phase-separated single-component fcc superlattice domains and binary MgZn2

Frank-Kasper superlattice domains. Interestingly, analogous behavior has been observed

in simulations of polydisperse hard spheres [16, 17]. Another intriguing example has been

provided in Ref. [18], where a MgZn2 phase has been assembled from single-component

hydrocarbon capped Au NCs. Given the considerable polydispersity in those experiments

(about 16%), it seems very likely that the emergence of the binary MgZn2 superlattice phase

is also the result of crystal fractionalization.

Besides a distribution of NC diameters, polydispersity implies also a distribution of

NC shapes. It is the goal for this paper to characterize the Polydisperse NC Distributions

(PNCD) reflecting those utilized in self-assembly experiments. We first review several ex-

perimental studies, where PNCD have been characterized, e.g. Ref. [2–6,19–21]. In Ref. [3],

for example, it was reported that gold NCs passivated by self-assembled monolayers of

straight-chain alkylthiolate molecules exhibit the shape of truncated octahedra (TO). As

https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00146
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described in Ref. [4], it is relatively straightforward to produce small diameter (D0 = 1− 2

nm) NCs by initiating synthesis with large thiol-to-gold ratios. Larger diameters, D, are

possible by reducing the amount of alkylthiolate molecules or, for example, as described in

Ref. [2], by starting with rapidly formed small diameter D0 NCs and continuing synthe-

sis for a reaction time, t. The latter results in a Gaussian distribution of NC sizes with

mean diameter satisfying 〈D(t)〉/D0 = [(1 − D0/D∞) exp(−γt) + (D0/D∞)]−1, and with

γ ≈ 0.035 min−1, and a typical saturation value of D∞ = 12− 45 nm. The standard devi-

ation σ also follows the same time dependence. These studies serve to illustrate that these

PNCD are controlled by the synthesis kinetics, and the TO shape of NCs indicates that

they have a single-crystal fcc structure. The latter implies that they are not necessarily

in fully-equilibrated ground states which theoretical studies indicate can be dominated by

non-fcc icosohedral, decahedral, and even amorphous structures for small sizes. See the

Supporting Information [3, 22–31].

The goal of this study, however, is not to characterize fully equilibrated NCs, but instead

those PNCD utilized in NC self-assembly experiments. [32, 33] Again, these PNCD are

intrinsically non-equilibrium distributions that reflect the kinetics of the synthesis process,

and any subsequent post-synthesis processing or filtering, see Ref. [34]. Based on the above

observations, our goal is to generate sets of fcc TO NCs from which we can generate PNCD

mimicking those used in self-assembled experiments. These TO NCs expose (100) (square)

and (111) (hexagonal) fcc faces. However, well-known symmetric regular NCs only occur

for certain very sparse sizes with “magic numbers” of atoms [35]. These magic sizes (in

atoms) are

NTO
a (n) = 16n3 + 15n2 + 6n+ 1 , (4.1)

giving Na = 38, 201, 586, 1289, 2406, 4033, 6266, · · · as the smallest possible clusters. The

integer n is the edge length in unit of nearest-neighbor distance (i.e., edges have n+1 atoms)

defining both (100) and (111) facet boundaries. Less symmetric clusters were considered in

Ref. [36] by defining two integers (n,m) such that n is the edge length defining the (111)



www.manaraa.com

87

facet boundaries and m = n− k those adjoining (111) and (100) facets. These are labeled

TO
|k|−
n (−4 ≤ k < 0, n > 1) and TOk+

n (0 < k ≤ 4, n > 1). The magic numbers are

(adapted from Ref. [23])

NTO
a (n, k) =

1

3
(3−11k+ 15k2−10k3 + 18n−54kn+ 54k2n+ 45n2−90kn2 + 48n3) . (4.2)

It was reported that the following 5 TO+ clusters NTO+
a = 79(n = 2), 314(n = 3), NTO2+

a =

140(n = 3), 459(n = 4) and NTO3+
a = 225(n = 4) showed the highest stability [36].

One obvious conclusion from the above discussion is that even considering all available

TO and TOk±
n sizes, there would be insufficient NCs to generate the type of almost contin-

uous PNCD observed in experiments. Therefore, many other sizes and related shapes must

be considered.

In Sec.4.2, we present a basic model for fcc NC structure and energetics. This model is

used to identify ground-state closed-shell TO structures which can be used to construct a

realistic PNCD. We note that our model is simpler than other studies based on more refined

energetics which focus on determining ground-state NC structures amongst all fcc or non-fcc

possibilities. However, just analysis of fcc structures is relevant for our application, where

our model not only recovers the basic features seen in refined studies, but also provides a

more direct insight into these features (e.g., by identifying an extended set of low-energy

closed-shell structures). In Sec.4.3, first we characterize the basic features of these selected

TO NCs. Then, we discuss how to generate PNCD mimicking experiment from our family

of TO NCs, and draw upon previous theoretical analyses to discuss crystal fractionalization

for these distributions. In particular, we make predictions for the specific phases expected

to emerge in crystal fractionalization as a function of the polydispersity of the PNCD.

This general predictive framework also serves to explain the experimental observations of

Ref. [18]. Finally, conclusions are provided in Sec.4.4.
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4.2 Methods

4.2.1 Model formulation

For the fcc NCs under consideration, their energies are calculated within a simple model

wherein atoms interact solely with nearest-neighbor (NN) attractive interactions (or bonds)

of strength φ. Thus, the total NC energy is simply proportional to the total number of NN

bonds. The effectiveness of this description has been promoted [37] based upon a recent

DFT analysis [38] assessing fcc NC energetics for various metals. It is instructive to note

that the NC energy in this model can also be computed exactly from the formula

E(N) = γ100Ac(100) + γ111Ac(111) + βALA + βBLB + 24αvert − εcN. (4.3)

Here γ100 = 2φ
a2

and γ111 =
√

3φ
a2

are the surface energies of the (100) and (111) fcc faces (see

supporting information, with a as the separation of NN atoms), and Ac(100) and Ac(111)

their respective areas (defined below); βA = φ
a and βB = 0.5φ

a are edge energies where LA

(LB) are the total length of edges adjoining (111) and (100) facets (pairs of (111) facets);

and αvert = 0.25φ is the energy associated with each of the 24 vertices. In Eq. 4.3, the last

term with εc = 6φ corresponds to the bulk energy contribution, while the first two terms

correspond to surface energy corrections, third and fourth correspond to edge corrections

to over-counting broken bonds shared by neighboring facets, and the fifth term corresponds

to the vertex correction to end point of edges with finite length.

In Eq. 4.3, the length of edges is defined as the distance between vertex atoms. The area

Ac(i) of facets is the product of number of hollow sites on the facet and area per hollow

site on a facet (a2 for (100);
√

3
2 a

2 for (111)). See Fig. 4.1a, a “hollow site” is the natural

adsorption site with the atom maximally coordinated to 4[3] atoms on a (100)[(111)] facet.

Both fcc and hcp hollow sites exist on a (111) facet, but only the former are populated to

propagate the single-crystal fcc structure. On a (100) face, an isolated atom placed in a

“hollow site” acquires a coordination of 4, while on a (111) it acquires a coordination of 3.
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(111
)
hollow

sites

(100) hollow sites

(a) N = 201 (b) N = 205 (c) N = 213

(d) N = 567 closed-shell (e) N = 567 open-shell

Figure 4.1: (a)–(c) show three closed-shell ground state configurations for N = 201, 205,

and 213: (a) regular TO201 with hollow sites on two facets marked by black dots in smaller

size; (b) TO205 with hollow sites on a (100) TO201 facet filled; (c) TO213 with hollow sites

on a (111) TO201 facet filled. (d)–(e) show two configurations with N = 567 viewed from

two angles: (d) is obtained by adding 30 atoms (marked as red) to (100) facets of N = 537

configuration to create a new closed-shell configuration; (e) is obtained by adding 30 atoms

to a (111) facet of N = 537 configuration to create an open-shell configuration with 3 (111)

hollow sites unfilled (marked as black smaller dots), and which we do not include in PNCD.

A simple analysis shows that the ratio of surface energies for extended (111) and (100)

facets in our nearest-neighbor model satisfies

γ111

γ100
=

√
3

2
= 0.8660254. (4.4)
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It is natural to compare the model value Eq. 4.4 with those in a large data base of

values for various metals determined from DFT analysis using the PBE functional [39].

Selected examples are shown in Table 4.1. We should note that there is some imprecision in

these values partly since the PBE functional is not exact, and partly because relatively thin

metal slabs were used in the analysis generating the database. For example, more extensive

analysis using thicker slabs and retaining the PBE functional for Ag [40, 41] finds a ratio

of 0.91 contrasting the data base value of 0.94. However, overall DFT values for the ratio

Eq. 4.4 lie around the model value. Finally, we remark that effective values of φ for various

metals can be perhaps most naturally extracted from DFT values for surface energies of

the (111) facet which is dominant in NCs using the formulae listed above relating the γ’s

to φ’s. These φ values are also listed in Table 4.1. These values were shown [37] to be quite

consistent with those extracted from the above-mentioned DFT analysis [38]. However, we

do emphasize that they are very different from effective values of φ(bulk) = Ec
6 obtained by

requiring φ recover the bulk cohesive energy, Ec [37]. As an aside, we note that the above

Table 4.1: nearest-neighbor separation a from Ref. [42,43] ; DFT results of (100) and (111)

surface energies and their ratio for different metals from Ref. [39]. The values of φ are

obtained from γ111 =
√

3φ
a2

.

Metal a(Å) γ111(eV/Å
2
) γ100(eV/Å

2
) γ111/γ100 φ(eV )

Ag 2.89 0.048 0.051 0.94 0.232

Cu 2.55 0.082 0.092 0.89 0.308

Au 2.89 0.046 0.054 0.85 0.221

Pt 2.77 0.092 0.115 0.80 0.408

Pd 2.75 0.084 0.095 0.88 0.367

model can be naturally extended to treat twinned fcc structures such as I and Dh shapes by

accounting strain energies through standard elasticity theory, see supporting information

Fig. S1. For fcc shapes (TO, CO), there is no strain energy, and the model incorporating

strain energy reduces to that above.
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4.2.2 Criteria for constructing the PNCD

Next, we return to our central goal of constructing a PNCD for fcc NCs within our model

by considering the optimal configuration for each size N with some additional restrictions.

The actual PNCD will consist of NCs that meet these three conditions:

1. Configurations maximize the number of bonds. Fig. 4.1(a-c) shows a N = 201 magic

size NC (Fig. 4.1a) and other ground states built from it: N = 205 (Fig. 4.1b) and

N = 213 (Fig. 4.1c), showing the atoms added on red.

2. Closed shell condition: All facets are smooth and complete. This implies that all

hollow sites within a given layer are either completely empty or filled, as is illustrated

in Fig. 4.1(a-d).

3. Degenerate ground states: If they exist, all such states must satisfy condition 2. As

an example of a doubly degenerate ground state occurs at N = 567, see Fig. 4.1.

Fig. 4.1d satisfies both criteria 1,2, but the other ground state Fig. 4.1e has empty

hollow sites as shown, and therefore violates this criterion.

The justification for the closed-shell condition (2-3) is provided by a Becker-Doering

rate equation formulation analyzing the kinetics of NC formation [44–46]. This formulation

accounts for reversible attachment-detachment of atoms to NCs where the ratio of the

attachment to detachment rates reflects the change in NC energy according to the principle

of detailed balance, e.g., a small (large) decrease enhances (reduces) detachment relative

to attachment rates. Thus, for closed-shell NC structures, the relatively low decrease in

energy upon attaching an extra (low-coordinated) atom (see the Supporting Information),

implies a high detachment rate for that atom. This suggests a kinetic enhancement of the

populations of NCs with sizes corresponding to such closed-shells. It might also be noted

that closed-shell configurations generally correspond to local minima in the NC energy per

atom versus size. See Fig. 4.3 in Sec.4.3.
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Based on the above criteria, we have devised an algorithm to generate all close-shell NCs

that satisfy conditions 1-3. The algorithm proceeds by starting from a regular TO with a

specific N , say 201, and sequentially adding atoms, one by one to fill facets arranging these

atoms in near-square 2D arrays on incomplete facets to maintain the minimum energy for

each size [47]. After a certain number of atoms are added, a complete facet is recovered

leading to a larger closed-shell ground state structure satisfying all the required conditions,

and which is incorporated into the PNCD. In this way, our process of generating all desired

NCs mimics a situation where all shapes grow from an initial TO seed. (As an aside, we

note that our algorithm has an intrinsic stability in the following sense. Even starting with

a structure far from the ground state (e.g., a CO configuration), upon adding atoms the

resulting structures do converge progressively towards ground-state TO structures. See the

Supporting Information Fig. S1.)

4.2.3 Detailed Characterization of Closed-Shell Clusters

The TO clusters with magic sizes given by Eq. 4.1 for various n have been shown to

be remarkably stable [35]. We therefore characterize the stable closed-shell configurations

within the range of sizes NTO
a (n) ≤ N < NTO

a (n+1). We identify 49 N ’s where stable NCs

exist with some degeneracy, (denoted by ΩN ,) for a total of 70 configurations, see Table 4.2.

In the supporting information, we provide snapshots for all the different configurations. It

follows from our results, that the configurations in the interval [NTO
a (n), NTO

a (n+1)) can be

readily mapped on to those in the [NTO
a (n+1), NTO

a (n+2)) interval. For example, those in

the interval N = [201, 586) are mapped onto those in the interval N = [586, 1289), where, for

example, N = 201, 225, 314, 459 would be mapped to N = 586, 637, 807, 1072 corresponding

to adding just one more atom to all edges. For this reason, it is only necessary to characterize

structures within one interval, say N = [201, 586). Refer to supporting information Fig. S5

for a detailed illustration, of the construction algorithm. As an aside, we note that CO are

never ground states due to their large (100) facets relative to (111) facets.
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Table 4.2: Table of sizes N of stable TOs in the period (NTO
a (2) ≤ N < NTO

a (5)). ΩN

denotes the ground state degeneracy for size N . Note that the configurations obtained by

rotational or mirror transformations are not included. The red N correspond to regular

TO’s; green N correspond to NCs with TO+ or TO− at one of the ground state(s).

n = m = 2

N ΩN N ΩN N ΩN N ΩN N ΩN

38 1 56 1 80 1 112 1 152 2

39 1 57 2 82 1 116 2 158 1

40 2 61 1 86 1 120 1 162 1

41 3 63 1 88 1 124 2 166 3

43 1 65 1 90 2 128 3 170 2

45 1 68 1 94 3 132 2 176 1

47 1 70 2 98 1 136 1 182 1

48 2 71 2 102 1 140 2 186 1

52 1 75 1 104 2 144 1 192 1

54 1 79 1 108 1 148 1

n = m = 3

N ΩN N ΩN N ΩN N ΩN N ΩN

201 1 256 1 318 1 396 1 486 2

205 1 260 2 324 1 405 2 498 1

209 2 269 1 333 1 414 1 507 1

213 3 275 1 339 1 423 2 516 3

219 1 281 1 345 2 432 3 525 2

225 1 288 1 354 3 441 2 537 1

231 1 294 2 363 1 450 1 549 1

235 2 296 2 372 1 459 2 558 1

244 1 305 1 378 2 468 1 570 1

250 1 314 1 387 1 477 1

N ΩN N ΩN N ΩN N ΩN N ΩN

586 1 698 1 816 1 960 1 1120 2

595 1 707 2 828 1 976 2 1140 1

604 2 723 1 844 1 992 1 1156 1

613 3 735 1 856 1 1008 2 1172 3

625 1 747 1 868 2 1024 3 1188 2

637 1 760 1 884 3 1040 2 1208 1

649 1 772 2 900 1 1056 1 1228 1

658 2 775 2 916 1 1072 2 1244 1

674 1 791 1 928 2 1088 1 1264 1

686 1 807 1 944 1 1104 1
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In counting degenerate structures, we did not include those that are related by proper

or improper (mirror) rotations. Just to illustrate how the degeneracy is counted, let us

consider the N = 213 case. There are four hollow sites on each of the six (100) facets (being

filled up in Fig. 4.1b from 4.1a on the N = 201 cluster) and twelve hollow sites on each of

the eight (111) facets (being filled up in Fig. 4.1c from 4.1a). So using N = 201 as a base

cluster, one can construct N = 205 by adding four extra atoms on top of one of the (100)

facets. Then by filling up two (100) facets gives N = 209, with degeneracy of two (filling

up two perpendicular or parallel (100) facets).

We can also fill up three empty (100) facets to have N = 213 (giving two degenerate

shapes). However, these twelve new atoms added on N = 201’s (100) facets can be re-

grouped on one single (111) facet with same number (sixty five) of bonds formed. Thus,

there is a degeneracy of three for N = 213.

(a) N = 225 symmetric (b) N = 225 (c) N = 459 symmetric (d) N = 459

Figure 4.2: (a)–(b) show structures for N = 225: (a) A symmetric TO+ closed-shell with

1068 NN bonds which is not a ground state configuration; (b) A less symmetric closed-

shell configuration with 1070 NN bonds which is a ground state. (c)–(d) show structures

for N = 459: (c) A symmetric TO+ closed-shell configuration; and (d) a less symmetric

closed-shell configuration. Both are ground states with 2304 NN bonds.

It should not be assumed that TOk+ configurations are automatically ground states.

For example, at N = 225 the (5, 2) TO3+ configuration Fig. 4.2a is not a ground state, as

the more irregular configuration Fig. 4.2b has lower energy. See Supporting Information

Fig. S5 for views of the ground state shown in Fig. 4.2b. Another interesting example is the
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N = 459 configuration TO2+ (n = 5,m = 3), which, as shown in Fig. 4.2c, has the same

energy as the more irregular Fig. 4.2d.

4.3 Discussion

4.3.1 Properties for selected TO NCs

The Wulff theorem [48] establishes that the equilibrium configuration of macroscopic

crystalline fcc clusters based on our model with nearest-neighbor interactions is a regular

TO. Considering the N as a continuous variable, we can obtain a fit, EFit(N), to the energy

of regular TO in the form or a polynomial [29,31,49] in N1/3 (where N1/3 reflects the linear

NC size) with four fitting parameters of the form

EFit(N) = a0 + a1N
1/3 + a2N

2/3 + a3N. (4.5)

This form should be compared with Eq. 4.3. These four parameters are determined by

matching our calculated energies for regular TO with sizes N = 38, 201, 586, 1289. In

this analysis, the parameters used in EFit(N) are a0 = −1.59φ, a1 = 6.07 × 10−2φ, a2 =

7.554φ, and a3 = −6.00φ.

In our actual analysis, N is not continuous but rather a discrete number of atoms in

the NC, and furthermore nanoscale clusters typically do not have such high symmetry as

regular TO. However, it is natural to consider deviations in the actual energy EN from that

of a hypothetical regular TO with size N and energy EFit(N). This discrepancy of energy

per atom, ∆E(N) = (EN − EFit(N))/N can be considered as providing a quantitative

assessment of how energetically favorable a size N is relative to the hypothetical minimum

energy regular TO.
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Figure 4.3: Plot of discrepancy of energy per atom with discrete N from a continuous N .

The vertical grid-lines correspond to sizes with ground state(s) only in closed-shell, listed

in Tab. 4.2; red dots represent N in regular TO shape, green dots represent TO+ or TO−.

Insets are zoom-in versions of 201 ≤ N ≤ 250 (upper), 586 ≤ N ≤ 686 (lower).

Comprehensive results are shown in Fig. 4.3 for ∆E(N) for 201 ≤ N ≤ 1289 not just

for closed-shell clusters, but also for other sizes generated by our algorithm with open-shell

structures constructed as described in Sec.4.2 and also in the supplementary information.

A similar representation of NC energetics was applied in Ref. [29] where interactions were



www.manaraa.com

97

described by the many-body Embedded Atom Method (EAM) and energy minimization

achieved with a Monte Carlo approach, and also in other refined modeling of fcc and non-

fcc ground state NCs [31,49]. Our results show that same features can clearly be captured

within our nearest-neighbor interaction model. The local minima correspond to sizes with

ground state(s) only in closed-shell shape(s) - the focus of this paper. Furthermore, the

pattern repeats between two regular TO magic numbers as also shown in Fig. 4.3.

One relevant measure of NC structure, particularly in the context of self-assembly, is

the sphericity defined as

Sph =
(36π)

1
3V

2
3

A
(4.6)

where A is the area and V the volume of the NC. In general, Sph ≤ 1 with Sph = 1

corresponds to a perfectly spherical shape. As shown in Fig. 4.4 the clusters are quite

spherical with Sph converging for large size to a value Sph∞ = 4
1+2
√

3

(
π
3

) 1
3 ≈ 0.90992

corresponding to a symmetric regular TO.

The effective radius, R, of the NC may be defined by the formula (cf. Ref. [50, 51])

4πR2 = A, (4.7)

where A is the area of the outer surface of the NC. Within this definition, NCs of the same

diameter have a single value for the surface area, and also identical grafting densities when

capped with the same number of ligands. An alternative definition for radius RV is provided

by 4πR3
V = 3V , and RV is related to R by R

RV
= 1√

Sph
> 1. It will be more convenient to

report NC diameters D = 2R or DV = 2RV . Either choice should satisfy D or DV ∝ N
1
3

at large N . The small discrepancy in the exponent (0.37 vs 1
3 ≈ 0.33) observed in Fig. 4.4

is due to the discrete sizes not fitting exactly in the continuous TO shape. The discrepancy

will decrease for larger N .
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Figure 4.4: Two periods, 201 ≤ N < 586 and 586 ≤ N < 1289 are shown with some values

N mentioned in discussion labeled. Sphericity: Regular TO’s with area A =
(
6 + 12

√
3
)
a2

and volume V = 8
√

2a3 have sphericity 4
1+2
√

3

(
π
3

) 1
3 ≈ 0.91. Diameter: Calculated from

surface area and volume assuming spherical shapes. Here we use the lattice constant 4.078

Å for Au.

4.3.2 Polydisperse NC size dDistributions and crystal fractionalization

PNCD used in the self-assembly studies of interest here are reasonably described by

Gaussian distributions of diameter, D, according to

P (D) =
1√
2πσ

exp

(
−(D − 〈D〉)2

2σ2

)
(4.8)

where again 〈D〉 is the average diameter, σ is the standard deviation, corresponding to

polydispersity δ ≡ σ/〈D〉. As a first example, we will consider mean diameters 〈D〉 =

1.68, 2.53, and 3.37 nm (using the Au lattice constant 4.078 Å), corresponding to TO



www.manaraa.com

99

(n=2, 3, 4), with N = 201, 586, 1289 atoms, see Eq. 4.1. We then build NC distributions with

polydispersity δ = 12%. This is done by sampling with the appropriate weight according to

the Gaussian distribution of diameters from our constructed ensemble of NCs with different

sizes. More specifically, this process involves sorting 350 NCs (with sizes ranging over 5

intervals between consecutive magic sizes 38 and above) by diameters, d1, d2, · · · , dk, · · · , dn,

and obtain a diameter range associated with the kth NC ∆k =
dk+1−dk−1

2 . Then, the

probability Pk of selecting the kth NC is given by Pk · ∆k = Φ
(
dk+1+dk

2

)
− Φ

(
dk+dk−1

2

)
,

where Φ(d) is the cumulative distribution function.

See Fig. 4.5 for the actual sizes and populations of NCs selected (indicated by the

symbols) in the generated distribution. Note that a Gaussian distribution of diameters

translates into a skewed distribution in sizes. It is clear from this plot that we have identified

a sufficient number of closed-shell TO NCs to capture the quasi-continuous distribution of

sizes observed in experiment. Thus, our ensembles of NCs can provide effective input for

MD simulations of these systems.
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Figure 4.5: NC distributions with mean sizes around N = 201, 586, 1289, and polydispersity

12% sampled from our selected ground state closed-shell TO NCs.

As a relevant application, we will discuss the experiments reported by Hajiw et al. [18],

and in this way show that the MgZn2 superlattice phase is indeed the result of crystal frac-

tionalization. The Orbifold Topological Model (OTM), described in Ref. [52, 53], provides
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detailed criteria to assess the stability of binary NC superlattices (BNSLs) with different

crystal structures formed by crystallization of a mixture of NCs with two different sizes.

It was shown that the stability of binary structures is a function of the ratio of the two

effective NC diameters, where the effective diameter is increased from the core diameter

of the metallic fcc TO NC by accounting for the presence of ligands. Consideration of

“vortex” configurations for the ligands is necessary for certain cases, but are not relevant

in this example. In its simplest form, the fractional degree of expansion of NC diame-

ter upon hydrocarbon ligand-capping (functionalization) is given by the Optimal Packing

Model (OPM) formula [54]

τλ = (1 + 3λ)
1
3 , (4.9)

where λ = 2L
D is the ratio between the maximum extended length of the ligand L = 0.12(k+

1) = 0.84 (nm), with k = 6 for hexanethiol ligands, see Ref. [55] (k is the number of

hydrocarbons) and the core diameter D. The effective “hard sphere” ratio of the two

functionalized NCs with core diameters DA > DB is then defined by

γ =
DB · τB
DA · τA

. (4.10)

BNSLs appear when γ are close to critical values γc, which for the most relevant superlattice

structures for the BNSL are given in Table 4.3, see Ref. [56] for details.

Table 4.3: Optimal values γc for most common BNSL structures.(φc = 2
5+
√

5

×
(

11 +
√

5 + 2
√

10(1 +
√

5)

)
)

BNSL MgZn2 CaCu5 AlB2 NaZn13

γc

√
2
3 ≈ 0.8164 1+2

√
19

15 ≈ 0.6479 1√
3
≈ 0.5774 1+

√
φc+1
φc

≈ 0.5576
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Our formulation considers a Gaussian PNCD with mean diameter, 〈D〉, and large poly-

dispersity, δ, which decomposes or phase separates into a central narrow Gaussian distribu-

tion corresponding to an fcc phase together with a series of BNSLs each of which corresponds

to a pair of Gaussian PNCD with δ ≤ 5%, and average diameters

DA/B = (1± α)〈D〉 with γ(α) = γc , (4.11)

where γ(α) is given by Eq. 4.10 with the corresponding core diameters DA/B. We point

out that the diameter of the NC includes the hexanethiol ligands [18] in the OPM formula

Eq. 4.10.

In Fig. 4.6, we consider a distribution of NCs with a nominal or mean diameter of 〈D〉 =

2.4 nm functionalized with hexanethiol and with a substantial δ = 16% polydispersity, i.e.,

the system described in Ref. [18]. We first decompose this distribution into sub-distributions

of NCs, with polydispersity δ ≤ 5%, forming mono-disperse fcc and MgZn2 phases. The

mean diameter of fcc sub-distribution is also 〈D〉 = 2.4 nm, the polydispersity is 5%. The

mean diameters of the two components of MgZn2 phase are given by Eqs. 4.10 and 4.11, the

polydispersity of component B is 5%, and the polydispersity of component A is obtained

from δA = σA
DA

, with σA = σB
2 , (the factor 2 accounts for 2 in AB2,) so that δA/B ≤ 5%. We

similarly extend this decomposition to account for other BNSL structures with larger γ’s.

The sum of the Gaussian distributions of the single component fcc superlattice and MgZn2

phases adds up to ∼ 60.5% of the original distribution, with fcc ∼ 31%, two components of

the MgZn2 phase∼ 9.8% and∼ 19.5% each. The rest NCs might be in CaCu5, AlB2, NaZn13

phases, as shown Fig. 4.6(a–c) or amorphous. Fig.4.6 also shows the results of sampling our

ensemble of closed-shell TO NCs for these individual Gaussian sub-distributions, naturally

extending the procedure described above.

Upon decomposing the full NC distribution as illustrated in Fig. 4.6, it is clear that

this large δ results in a significant presence of the fcc superlattice phase as well as the

MgZn2 BNSL. Among the other phases listed in Table 4.3, only CaCu5 may appear in trace

amounts. Should experiments be conducted with larger polydispersity δ, we predict that
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phases at smaller γc would appear (see the Supplementary Information Fig. S2 for analysis

of such cases with larger polydispersity).

In addition, for the decomposed distributions, Fig. 4.6 shows the closed-shell TO NCs

from our ensemble which dominate not just the central narrow Gaussian distribution gen-

erating the fcc phase, but also those dominating the bimodal distributions in the wings

which generate the binary phases. For the selected mean diameter 〈D〉 = 2.4 nm capped

with hexanethiol ligands and a large polydispersity 16%, the TO NC shown with size N =

507 dominates the fcc phase, and TO NCs shown with sizes N = 345 and 707 dominate the

the MgZn2 phase. This prediction could in principle be validated by detailed microscopy

studies of these individual phases.
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Figure 4.6: Decomposition of a Gaussian NC distribution with mean diameter 〈D〉 = 2.4

nm capped with hexanethiol ligands and a large polydispersity 16%. (a) Decomposition

into: a sub-distribution about D = 2.4 nm with polydispersity 5% forming monodisperse

fcc superlattice; two sub-distributions about DA and DB with optimal ratio γc of MgZn2;

and an additional sub-distribution about the two diameters with optimal ratio for CaCu5.

(b) Same as (a) except the sub-distribution for CaCu5 is replaced by one for AlB2. (c) Same

as (a) except the sub-distribution for CaCu5 is replaced by one for NaZn13. In these three

cases, only CaCu5 has significant population as a third minority phase.
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4.4 Conclusions

In this paper, we have characterized the structure of fcc NCs constituting typical poly-

disperse fcc nanocrystal distributions utilized in self-assembly experiments. We have shown

that in between each consecutive pair of regular truncated octahedra (with magic num-

ber sizes), there are exactly 49 sizes N , some with degeneracy, for a total of 70 distinct

favorable closed-shell configurations. The full description of these configurations is given

in supporting information Table S3. Although the overall polydisperse NC size distribu-

tions are kinetically controlled, the shapes of individual NCs within these distributions are

close to ground state fcc structures as identified in experimental studies [28, 29, 31]. The

constructed quasi-periodic sequence of sizes includes NC sizes matching those observed in

mass spectroscopy, see Ref. [36]. Furthermore, the closed-shell configurations correspond

to local minima of the energy per atom (Fig. 4.3), compatible with other theoretical stud-

ies [29, 31] utilizing different approaches. We therefore conclude that our results provide

a realistic description of PNCD. Our generated ensemble of closed-shell fcc NC structures

after appropriate functionalization (which a non-trivial task) will enable MD simulation

crystal fractionalization based on these realistic polydisperse NC distributions.

Because the shapes of NCs in our ensemble are approximately spherical (see Fig. 4.4),

addition of alkylthiolate ligands (for 1-6 nm diameters) will allow the resulting capped

NCs to be quite accurately represented as spheres [50]. Thus, according to the proposal

discussed above based on analysis for roughly spherical NCs, for increasing polydispersity,

upon self-assembly one expects the appearance of a sequence of superlattice phases, see

Ref. [52, 53]

fcc/bcc→ MgZn2 → CaCu5 → AlB2/NaZn13 → Other phases: NaCl, bcc AB6, etc.

(4.12)

The polydispersity, δ, where each superlattice phase first has a significant presence may be

estimated as discussed in supplementary information Fig. S3. One finds that the MgZn2

superlattice phase is present in significant amounts roughly for δ ≥ 6%, CaCu5 for δ ≥ 20%,
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AlB2 for δ ≥ 32% and NaZn13 for δ ≥ 36%. Particularly pertinent are the results of Hajiw

et al. Ref. [18], where a δ = 16% distribution of alkylthiolate gold NCs reported a MgZn2

phase. Our results Fig. 4.6 clearly show that this MgZn2 superlattice phase is the result

of crystal fractionalization. What is remarkable about Ref. [18] is the high quality of the

crystals reported, as the X-ray data includes more than 10 Bragg peaks. This suggests

that crystal fractionalization may be a very efficient pathway to self-assembly of multiple

binary phases. Further experimental evidence, including higher polydisperse samples to

confirm the series in Eq. 4.12, will be necessary. We would like to emphasize that Fig. 4.6

and supplementary information Fig. S2, not only predict the crystal phases, but also the

structure and shape of each of the NCs within the superlattice, as allowed by our detailed

classification. This provides a test for our proposed PNCD that future experiments should

be able to validate.

Experiments on aqueous dispersions of colloidal silica with high polydispersity δ = 18%

have also reported crystal fractionalization. Here, because there are no flexible capping

ligands, vortices cannot develop and the possible phases are only those that are described

by hard spheres [52]. Based on the sequence Eq. 4.12, at this level of polydispersity, there

is the possibility of some small amounts of the CaCu5 superlattice phase. We expect that

further experimental studies will confirm this prediction.

Rather interestingly, Lindquist et al. [17] have reported crystal fractionalization for

polydisperse hard spheres with δ = 12% into a MgZn2 superlattice phase, while Coslovich

et al. [16] report an AlB2 superlattice with a very broad distribution. These results show

that such effects are highly universal, present even in the simplest of models, that is, hard

spheres. The emergence of an AlB2 superlattice for very broad distributions as described

in Coslovich et al. [16] provides further evidence for the series in Eq. 4.12. Very recently,

Bommineni et al. [57] have reported, for the first time, the NaZn13 phase as a result of

crystal fractionalization, in complete agreement with Eq. 4.12. They also report some more

complex Frank-Kasper phases, which fit within existing descriptions of binary systems [56]
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and will be analyzed elsewhere.

A remaining interesting question is into what structures the other possible shapes (I,

Dh) will assemble. As shown in supplementary information, Fig. S1, the sphericity of Ino

or Marks decahedral shapes, for example, is not that much different from TO. Still, the

complexity of their shapes will make it challenging to functionalize uniformly and more

likely, will result in a considerable anisotropy, which may significantly affect the optimal

packing of the stable thermodynamic phases [58] as driven by shape.

4.5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website

at DOI: 10.1021/acs.jpcc.9b00146.

Magic numbers and other considerations for non-fcc clusters; ratio of γ111/γ100 in our

model; details of construction of ground-state NCs for any N ; BeckerDoering formulation

for NC populations; discussion of CO NCs; additional BNSL distributions; sphericities of

NC configurations; and images of NCs and tables of cluster sizes.
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Abstract

Far-from-equilibrium evolution of metallic nanocluster shapes is highly sensitive to the

atomistic-level details of surface diffusion for diverse local surface configurations. A stochas-

tic model was developed incorporating realistic values for the multiple diffusion barriers

(contrasting previous unrealistic generic prescriptions) based upon insights from homoepi-

taxial film growth. Kinetic Monte Carlo simulation then elucidates the conversion of Ag

nanocubes to Wulff polyhedra mediated by nucleation of new 100 facets, the pinch-off of

sufficiently elongated Ag nanorods, and key aspects of sintering for orientationally aligned

Ag and Au nanoclusters. The time scale for sintering of Au nanoclusters observed in high-

resolution transmission electron microscopy studies was also recovered.
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5.1 Introduction

Solution-phase synthesis strategies for formation of three-dimensional (3D) crystalline

metallic nanoclusters (NCs) have achieved remarkable control of NC structure [1,2] enabling

fine tuning of properties for applications, e.g., plasmonics or catalysis. Note that in such

applications often NCs are removed from the solution-phase environment. However, NCs

are intrinsically metastable, and thus are vulnerable to postsynthesis reshaping towards

their equilibrium Wulff shapes. Also, ensembles of NCs can coarsen, e.g., via coalescence

or sintering of mobile clusters [3, 4]. On the nanometer scale, it is anticipated that the

dominant mass transport mechanism facilitating reshaping and sintering is surface diffusion

(also sometimes described as periphery diffusion) [5, 6]. Assessment of the associated equi-

libration kinetics is important to determine robustness of the functionality of NCs. In situ

high-resolution transmission electron microscopy (HRTEM) studies [7–11] are providing in-

creasingly high-fidelity imaging of such reshaping phenomena. However, there remains a

need for realistic and predictive atomistic-level modeling for a more complete understanding

of some intrinsically nanoscale features of behavior.

Classic deterministic continuum treatments of reshaping, typically with isotropic sur-

face energy and diffusivity [5, 12–14], predict that the relaxation time, τeq, for reshaping

and sintering of macroscopic particles mediated by surface diffusion scales like τeq ∼ N4/3

for NCs of N atoms. Subsequent theoretical and experimental analyses revealed complex

phenomena such as void formation near the neck region for sintering particles [6], and also

pinch-off for elongated shapes [10, 15–17], both reminiscent of the Rayleigh-Plateau insta-

bility. A Langevin version of these formulations might be applied to smaller scale objects

where fluctuations are more important [18]. However, it is recognized that such continuum

treatments generally fail to adequately describe evolution on the nanoscale, noting that

NCs are often strongly faceted [19–21]. This failure also applies for two-dimensional (2D)

epitaxial metallic NCs when linear sizes are below the persistence length of straight steps,

or below other characteristic lengths determined by the details of the periphery diffusion
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kinetics [22–24].

Stochastic lattice-gas models analyzed by kinetic Monte Carlo (KMC) simulation can

track the evolution of crystalline NCs over relevant time scales [19,21,25,26]. Such models

can in principle incorporate the complex dependence of the activation barriers for hopping of

surface atoms on the vast array of possible local atomic environments (e.g., hopping across

facets, along straight step edges and around kinks, and between terraces and facets). How-

ever, such analyses have previously utilized generic prescriptions of these barriers, typically

the so-called Initial Value Approximation (IVA) or bond counting model where the barrier

is determined entirely by the coordination in the initial state before hopping [7,19,21]. IVA

does satisfy detailed balance guaranteeing evolution to the correct equilibrium structure,

contrasting some treatments [26]. However, it fails dramatically to capture key features of

surface diffusion in fcc metal systems. See Appendix A and Supplemental Material [27].

This severe failure includes incorrectly predicting the relative values of barriers for terrace

diffusion on different facets, and of the barriers for step edge versus terrace diffusion [28], and

also neglecting the presence of additional one-dimensional, 2D, and 3D Ehrlich-Schwoebel

(ES) barriers for rounding of kinks, descent of monoatomic steps, and transport between

facets [28–30]. These detailed features of surface diffusion are important for reliable treat-

ment of NC reshaping. This failure of IVA is also evident when comparing results from

KMC simulations for the evolution of 2D epitaxial NC shapes based on IVA models with

those from realistic modeling, or with scanning tunneling microscopy experiments (see Sup-

plemental Material [27]).

Furthermore, IVA hopping barriers include an arbitrary constant. This constant is often

adjusted to fit the experimental time scale for NC evolution [7] but IVA then produces

unphysical barriers. Alternatively, the constant can be adjusted to fit some specific barrier,

but then IVA fails to match time scales and appropriate values of other barriers.

In Sec. 5.2, we present our strategy to craft a general formalism which reliably describes

barriers for diverse surface hopping processes. We will exploit extensive insights from ex-
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perimental and theoretical analyses of homoepitaxial fcc metal film growth and relaxation

for multiple low-index substrate orientations [28, 29] particularly for Ag [31–35]. This ap-

proach eliminates all of the deficiencies of IVA, and allows prediction of actual relaxation

time scales. The latter is key for assessing robustness of metastable NC structures. In Sec.

5.3, the model is applied to analyze reshaping of Ag NCs. First, we consider evolution of

Ag nanocubes [1, 36] to equilibrium Wulff shapes, which involves the erosion of 111 corner

facets and nucleation of new 100 side layers. Second, the pinch-off of elongated Ag nanorods

or nanowires is assessed. In Sec. 5.4, the model is applied for sintering of Ag NC pairs fol-

lowing orientated attachment [37, 38] identifying for aligned 100 facets distinct early-stage

neck filling and late-stage nucleation-mediated reshaping regimes. In addition, the model

is shown to capture the evolution and time scale observed in experimental HRTEM studies

for sintering of ∼ 4-nm Au NCs. A summary of our analysis is presented in Sec. 5.5.

5.2 Model Formulation

We consider crystalline fcc NCs with atoms interacting via an effective nearest-neighbor

(NN) attractive interaction of strength φ > 0. The distance between NN atoms will be

denoted by a, which also corresponds to the surface lattice constant so, e.g., a = 0.289nm

for Ag. The effectiveness of this description is supported by recent analysis in which the

energy of NCs was decomposed as a sum of energies per atom, En, where the En depend on

the coordination, n, of the atom. This study demonstrated a near-linear variation of En with

coordination n [39] consistent with a NN interaction model. We note that appropriate values

of the effective interaction strength, φ, are typically far below those extracted from the bulk

cohesive energy, Ec. For example, for Ag we will set φ = 0.225eV versus Ec/6 = 0.492eV

(where the latter reflects the feature that each bulk atom in a fcc metal can be regarded as

having 12 shared bonds with neighbors). It should be noted, however, that our choice of φ

reasonably recovers surface energies for low-index facets for various metals. See Appendix

B.
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In this model, the equilibrium Wulff shape of NCs is a truncated octahedron bounded

by 111 and 100 facets in the macroscopic regime. The lengths of edges joining 111 facets

to 100 facets (a{100}), and to other {111} facets (a{111}) , are equal [40]. On the nanoscale,

these shapes are most closely achieved for certain magic numbers of atoms [41]. Choices

with a{111} = a{100} and with a{111} = a{100} + 1 (in units of surface lattice constant, a)

correspond to local-energy minima [40]. The number of atoms, NW (a{100}, a{111}), in the

NC satisfies NW (3, 3) = 201, NW (3, 4) = 314, NW (4, 4) = 586, etc.

Hop rates of surface atoms are selected to have an Arrhenius form, h = ν exp [−Eact/(kBT )],

for NC temperature T where ν is a common attempt frequency and Eact is the activation

barrier. For hopping from an initial (i) site to a final (f) unoccupied neighboring fcc lat-

tice site, Ei and Ef denote the total interaction energy for the atom at these sites. Thus,

Ei,f = −ni,fφ, for atom coordination numbers ni,f ranging from 1 to 11 for atoms with

≥ 1 vacant NN fcc site. ETS denotes the total interaction energy at a transition state (TS)

for hopping between these sites. Then, the activation barrier, Eact(i → f), is given by

Eact(i → f) = ETS − Ei, where “symmetric” ETS is the same for forward (i → f) and

reverse (f → i) transitions, thereby ensuring detailed balance. The standard IVA bond-

counting choice selects constant ETS = CIVA, whereas an alternative Metropolis choice

selects Eact = CMET + max(Ef , Ei). However, we emphasize that both choices very poorly

represent diffusion on fcc surfaces. See Supplemental Material [27], Ref. [28], and Appendix

A. Thus, instead, our choice is a refined version of a symmetric Bronsted-Evans-Polyani

form [42,43]:

ETS = Cα + 1/2(Ei + Ef ), so that Eact = Cα + 1/2(Ef − Ei), (5.1)

where instead of the standard selection of a single Cα we will assign multiple Cα for judi-

ciously selected classes, α, of hops. To satisfy detailed balance, forward and reverse hops are

always assigned to the same class, α, and thus have the same Cα. Since NN initial and final

sites have four shared NN sites, and each have another seven NN sites, the occupancy of 18

sites impacts Eact.Here, we are exploiting the modeling framework developed in Ref. [44].
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See Fig. 5.1(a).

We consider four basic classes of hopping: terrace diffusion on {100} facets or on {111}

facets labeled by α = 100TD or α = 111TD, respectively [Figs. 5.1(b) and 5.1(c)], and edge

diffusion along a {100}-microfaceted A step or a {111}-microfaceted B step on a {111} facet

labeled by α = 111A or α = 111B, respectively [Figs. 5.1(d) and 5.1(e)]. It is appropriate

to note that edge diffusion along a close-packed step on a {100} facet is locally equivalent

to edge diffusion along an A step on a {111} facet, so these are assigned the same barrier

in our modeling. Independent and separate determination of these barriers indicates that

this assignment is reasonable (see Supplemental Material [27] and Ref. [28]). Similarly,

in-channel terrace diffusion on a {110} facet is locally equivalent to diffusion along a B step

on a {111} facet, so barriers are set equal in our modeling, which again is reasonable based

upon independent analysis [28].

Figure 5.1: (a) 18 sites impacting black atom hopping [44]. Four sites NN to both initial (i)

and final (f) sites are labeled 14. Seven additional sites NN to i (f) are labeled 1i7i (1f7f).

Some sites are not visible (4, 4i, 6i, 6f). These 18 NN sites can be either filled or empty.

(be) four classes of intralayer terrace and edge diffusion. NN sites in (be) which must be

filled are indicated.

Each of the above basic hopping classes is divided into two subclasses. The first subclass

is intralayer diffusion where both the initial and the final state are fully supported at a hollow

site created by atoms in the lower supporting layer. Here, Cα adopt “base values”Cα = cα.
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We set

c100TD = 0.425eV, c111TD = 0.100eV, c111A = 0.275eV, (5.2)

c111B = 0.300eV for Ag,

effectively capturing actual terrace and edge diffusion barriers for low-index Ag surfaces (in

marked contrast to the IVA prescription) [28, 31–35]. One significant point is that some

hopping processes involve a transition between an edge atom at the step edge (with one or

more lateral neighbors) and one on the terrace (with no lateral neighbors). In this case,

both forward and reverse processes are assigned to the terrace diffusion class.

The second subclass corresponds to interlayer diffusion. First, we consider cases where

a fully supported atom hops out over a step edge to a site which is not fully supported. In

such cases, the rate for such a hop can be impacted by ES barriers, δES. Here, we set

Cα = cα −mφ/2(+δES) for m missing supporting atoms. (5.3)

The term mφ/2 in Cα compensates for the feature that 1/2(Ef−Ei) = +mφ/2 for a perfect

step with a single atom on the upper terrace, resulting in Eact = cα(+δES) for that case.

Whether or not δES is included depends upon the details of the step edge configuration.

For interlayer diffusion on a Ag{100} facet, δES is included for m = 2 (descending a close-

packed step), but not for m = 1 (descending at a kink). Why? A finite ES barrier exists for

hopping down a close-packed step, but not at a kink where exchange is facile [28]. Thus,

for an atom initially with no lateral NN, one has Eact = c100TD(c100TD + δES) for m = 1

(m = 2). For interlayer transport from an Ag{111} facet, δES is included if m = 1, but

not for m = 2. Why? Descent is facile from a B step or kink at an A step (m = 2), but

not from an A step or kink at a B step (m = 1) [34]. In both cases, we set δES = 0.10eV

reasonably matching the best estimates of ES barriers for Ag [28, 32, 34]. Finally, we note

again that to satisfy detailed balance, for the reverse process of an atom hopping back to

a fully supported site, one assigns the same Cα as for the forward process of hopping out

over the step edge.



www.manaraa.com

118

We emphasize that our formulation for realistic kinetics is general, although one needs

to revise the selection of values for Cα, φ, and δES for different metals. Appropriate values

for Pt follow from Ref. [29], and for Au are presented in Sec. 5.4. However, the appropriate

prescription for inclusion of an ES barrier can be system dependent, e.g., the details for

Pt based on detailed analysis of interlayer transport for that system [29] differ from those

for Ag. In the following sections, we perform extensive KMC simulations of this model to

precisely characterize NC reshaping and sintering.

5.3 Reshaping of Ag Nanoclusters

5.3.1 Relaxation of Ag nanocubes to Wulff shapes

Nanocubes can have distinctive plasmonic properties given their shape, and also distinc-

tive catalytic properties given that the exposure of {100} facets is maximized. Consequently,

there is interest in stability against nanocube reshaping, as is reflected by recent HRTEM

studies and associated analysis [45]. It was suggested that the barrier to shift an atom from

the edge of a nanocube to the terrace was key in controlling reshaping [45]. Our analysis

indicates that a more complex nucleation process controls overall shape relaxation. Com-

plete nanocubes with {100} facets have unstable low-coordinated edges and corner and edge

atoms. Thus, to mimic synthesized near-perfect nanocubes [1, 36], we start with truncated

Ag nanocubes where all atoms have at least six NNs. See Fig. 5.2(a) for time t = 0.

Below, we assess the temperature dependence and size dependence of relaxation to the

Wulff shape. In Figs. 5.2(b) and 5.2(c), we monitor the “width” h100 (h111) between the

outermost {100} facets ({111}) facets) on opposite sides (corners) of the nanocube. These

quantities are naturally rescaled by interlayer spacing
[
a/
√

2
]

for {100} facets and layers,

and a/
√

3/2 for {111} facets and layers] to monitor the evolution of the number of {100}

and {111} layers. This definition identifies every plane with at least one atom as a layer.

The evolution from a truncated nanocube to a Wulff shape involves formation of new {100}

layers on the sides of the initial nanocube, and erosion or dissociation of {111} facets at the
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corners. Results for larger size N = 1584 atoms show distinct stages in these formation and

dissociation processes. Apart from the final equilibrium plateau, there is a weak plateau

for h100 and h111 changing by two layers. This corresponds to the nucleation of one new

layer on each {100} facet, and complete dissociation and removal of a {111} facet from each

corner. Note that nucleating a layer on just one side, or removing a layer from just one

corner, but not the other, is evidently a rare transient state.

Figure 5.2: Ag nanocube reshaping: (a) Configuration snapshots (N = 1584,T = 1100K).

T -dependence of time evolution of rescaled h111(t) in Fig. 5.2(b), rescaled h100(t) in Fig.

5.2(c), and of the scaled total energy in Fig. 5.2(d) and Fig. 5.2(e), for N = 586, 1584

averaged over 400 trials.
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To assess the T dependence of the evolution, we introduce characteristic times, τrelax =

τ100 and τ111, reflecting significant evolution of h100 and h111, respectively, from their initial

values [specifically, a change by two layers, as indicated in Figs. 5.2(b) and 5.2(c)]. From

these characteristic times, we assess effective Arrhenius energies, Eeff. For τrelax = τ111,

which characterizes dissociation of a {111} corner facet and transfer of its atoms to a {100}

facet, Arrhenius analysis of KMC results for τ111 yields Eact ≈ 0.7eV. Considering the NC

starting as a perfect truncated nanocube, a corner atom on the {111} facet transfers to the

{100} facet via what can be regarded as a kink site on a close-packed step edge for the

{100} facet. The barrier for the first step Eact = 0.525eV is relatively low. However, in

the second step to reach the final adsorption site on the {100} facet, which is ∆E = +2φ

above the initial site energy, the atom must surmount a barrier of energy c100TD above the

final-state energy. Thus, the overall atom transfer barrier is Eeff = c100TD +∆E = 0.875eV,

comparable to the simulation result. Note that, for higher T , entropic factors associated

with thermal excitation are significant, and not incorporated in our analysis.

Atoms freed from {111} facets diffuse onto {100} facets and nucleate new {100} layers,

a process characterized by τrelax = τ100, for which Arrhenius analysis of KMC results yields

a distinct and higher Eeff ≈ 1.1eV. Here, we naturally analyze the formation of a relatively

stable square tetramer of atoms on {100} facets. Consider first the transfer of three of the

12 atoms on the initial complete {111} corner facet to a single {100} facet to form a trimer.

This involves breaking a total of eight lateral bonds on the {111} facet, but forming two

lateral bonds in the trimer, and increasing coordination to supporting atoms on the {100}

facet for a total energy change of ∆E123 = +3φ. Let E4 denote the barrier for transfer of

a fourth atom from the {111} facet to the {100} facet to stabilize the trimer. This process

is controlled by a last step to reach a {100} adsorption site yielding a barrier E4 = 0.75eV.

This implies an effective nucleation barrier of Eeff = E4 + ∆E123 = 1.42eV. However, if the

trimer is at the {100} facet edge so that the atom from the {111} facet can hop directly into

a site with two lateral bonds forming the square tetramer, then E4 is reduced to 0.525eV
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and Eeff = 1.20 eV, reasonably consistent with simulation results.

We also track the total NC energy, E [Figs. 5.2(d) and 5.2(e)], and define a reshaping

time τrelax = τE Max corresponding to the peak energy. Both peak and late stage E are larger

for higher T due to entropic effects. Arrhenius analysis for τE Max yields Eeff ≈ 0.72eV,

coinciding with that for τ111. Thus, the energy maximum corresponds to the early-stage

disruption of {111} facets, E decreasing only after new {100} layers nucleate and grow.

It should be emphasized that the above results for the evolution of h111, h100, and E

are obtained from extensive KMC simulation averaging over several hundred trials. This

is necessary to minimize the effect of substantial fluctuations at the nanoscale, and to

thus obtain precise results for characteristic times and Arrhenius energies. We also note

that almost perfect Arrhenius behavior of characteristic times is observed over the probed

temperature range (see Supplemental Material [27]). The identified Arrhenius behavior

allows prediction of relaxation time scales for lower T . The nucleation process with the

higher Eeff ≈ 1.1eV will be rate controlling, implying that, e.g., τrelax = τ100 ≈ 10−3.6, 10−0.8,

and 103.8s at 500, 400, and 300K, respectively, for N = 1584, choosing ν = 1012.5s−1
. These

estimates are actually lower bounds as Eeff should increase somewhat for lower T (see

above).

Finally, we roughly assess size scaling of τrelax based on just two NC sizes: N = 586

and 1584. Analysis of τrelax ∼ Nβ corresponding to the late stages of the process yields

β increasing for decreasing T from β ≈ 1.3 at 1000K to β ≈ 1.7 at 800K. Deviations for

lower T below the classic continuum value of β = 4/3 indicate the presence of a nucleation-

mediated process with finite effective barrier [19,21]. This observation is consistent with our

assessment that the evolution of h100, and specifically that the Arrhenius energy extracted

from τ100, is controlled by the nucleation of new {100} layers.
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5.3.2 Pinch-off of Ag nanorods

Within the framework of continuum modeling, shape evolution of objects mediated

by surface or periphery diffusion, which is of relevance here, can differ qualitatively from

curvature-driven evolution [46]. In addition, it can differ from evolution mediated by in-

hibited attachment-detachment (also described as evaporation-condensation), which is also

controlled by local curvature. For 2D systems, Grayson’s theorem [47] shows that pinch-off

is not possible for curvature-driven evolution, and it has been argued that the same is true

for the evaporation-condensation mechanism [48]. However, pinch-off can occur for evolu-

tion mediated by periphery diffusion in 2D systems, as has been observed in experiment

and modeling for metallic surface systems [48]. For 3D systems, Grayson’s theorem does

not prohibit pinch-off for curvature-driven evolution, and no doubt pinch-off can also occur

for evaporation-condensation. Furthermore, one anticipates that the propensity for pinch-

off in three dimensions is substantially greater for evolution mediated by surface diffusion

versus curvature. Indeed, analysis of the evolution of near-cylindrical rods via continuum

theory for isotropic surface energy and diffusivity indicates an instability with wavelength

λ ≈ 4.45× rod diameter [11]. Such behavior is reminiscent of the Rayleigh-Plateau for fluid

steams or jets. This result implies that elongated structures with sufficiently large aspect

ratio, R, will also pinch off, and provides a prediction of the critical aspect ratio of about

Rc = 4.5. Certainly, behavior on the nanoscale will differ quantitatively from the above

continuum predictions. However, it is reasonable to expect that qualitative features such

as pinch-off will be preserved.

NC synthesis can produce elongated nanorods for various metals, so it is natural to

explore if postsynthesis evolution leads to pinch-off, and to determine the associated Rc.

Indeed, experiments involving metallic nanowires [16], theory [14], and atomistic simulation

(but based on evaporation-condensation and not satisfying detailed balance) [17], indicate

the existence of a pinch-off instability for large R. However, it is appropriate to recognize

that the key feature in evolution of nanorods is the presence of strong fluctuations. As
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a result, evolution for a range of initial aspect ratios, R, has a significant probability for

either pinch-off or achieving a single compact Wulff shape. For this reason, we introduce

the concept of a pinch-off probability, P (R), which will increase monotonically with initial

aspect ratio R. We can determine P (R) by running multiple independent simulations of

nanorod evolution, and assessing the fraction of times that pinch-off occurs.

We consider this issue by applying our model to analyze specifically the evolution of

readily synthesized octagonal Ag nanorods which have alternating {100} and {110} side

facets, and {100} end facets [1]. An example of simulated evolution for R = 7.16 which

leads to pinch-off is shown in Fig. 5.3. Multiple simulations for nanorods with this and

many other R values (while retaining a fixed nanorod width) lead to the results for P (R)

versus R shown in Fig. 5.4. Naturally defining a critical aspect ratio, Rc, via P (Rc) = 1/2

leads to the estimate of Rc = 6.9 somewhat above the classical continuum value.

Figure 5.3: Pinch-off of an octagonal Ag nanorod with N = 2202 at T = 700K.

As an aside, we have also considered pinch-off for elongated Ag nanobars with a square

cross-section and all faces corresponding to {100} facets. In this case, the critical aspect

ratio is Rc ≈ 8− 9 for the selected cross-section side length of about 1.7nm.
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Figure 5.4: Simulated pinch-off probability of Ag nanorods at 700K as a function of initial

aspect ratio.

5.4 Sintering of Oriented Pairs of Ag and Au Nanoclusters

Sintering of pairs of roughly equal-sized NCs with equilibrated Wulff shapes can follow

oriented attachment [37, 38] which could involve alignment of either {100} facet planes or

{111} facet planes, and where in addition there is azimuthal alignment so the combined

attached NC pair has a single-crystal fcc structure. This latter feature is necessary in order

to apply our modeling formalism. Before applying our atomistic-level model to analyze

evolution during the sintering process following such attachment, it is instructive to show

simple geometric schematics which illustrate the anticipated shape evolution, and which

we note is distinct for aligned {100} versus {111} facets. Figure 5.5 illustrates the initial

configuration just after oriented attachment, the facets which are present upon filling in the

neck region to first create an overall convex shape, as well as the ultimate Wulff shape. On

the nanoscale, which we consider, fluctuations will inhibit the formation of such simple ge-

ometric shapes with well-defined facets. However, we shall find that some of the qualitative

features shown in Fig. 5.5 are still evident.
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Figure 5.5: Schematic of geometric evolution during sintering of NCs with (a) aligned {100}
facets and (b) aligned {111} facets.

5.4.1 Sintering of equal-sized Ag Wulff nanoclusters

We first consider sintering for equal-sized Ag Wulff NCs initially joined by oriented

attachment with aligned {100} facets. Simulated evolution at T = 600K is shown in Fig.

5.6(a) for sintering of a pair of NCs each with a100 = a111 = 4 and NW (4, 4) = 586, so

that the total size equals N = 2NW = 1172 atoms. Initial rapid evolution involves transfer

of atoms from the ends of the NC pair to the concave neck region where they are readily

captured at existing step edges. See Fig. 5.6(ai). When the neck is filled in, one obtains a

convex elongated structure as shown in Fig. 5.6(aii), the sides of which ideally correspond

to alternating {100} and {110} facets as illustrated in Fig. 5.5(a). Late-stage equilibration

involves transfer of atoms from the ends of the convex elongated shape, nucleating new

{100} layers on the {100} side facets, and eliminating {110} side facets. See Fig. 5.6(aiii).

Traditional continuum treatments of surface diffusion mediated sintering of spherical
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particles focused growth on radius of the neck r ∼ tα predicting that [6, 12] α = 1/7.

This exponent reflects the initial singular cusplike nature of the neck region in this classic

continuum problem, and thus it should not apply for our system. Nonetheless, we analyze

neck growth considering the average number of atoms, A, in each of the two {100} planes

at the center of the NC pair orthogonal to their long axis. Thus, A measures the neck area,

and A1/2 reflects the “radius” r. We estimate the limiting value, A∞, of A as t→∞, from

the Wulff-like equilibrium cluster. Figure 5.6(b) shows the evolution of A/A∞ for N = 1172

and various T . The first stage leading to formation of a convex-shaped NC is facile with

no evidence of classic scaling, and ends when A/A∞ reaches around 0.6. A sharp transition

from this first stage to the late stage of evolution (which we show to be nucleation mediated)

is only evident below 750K [see Fig. 5.6(b)].

Figure 5.6: (a) Sintering Ag Wulff NC pair with aligned {100} facets and with NW = 586

and 2NW = 1172 at 600K. (b) Evolution of the scaled neck area for N = 1172 and various

T averaging over 400 trials (35 trials at 550K). Green data points: single trial at 600K.
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Despite the lack of classic scaling A1/2 ∼ tα with α = 1/7 for short t, we extract an

effective exponent, αfill, based upon the slope of the log-log plot in Fig. 5.6(b) at the

inflection point corresponding to the neck filling regime (just below the elbow for lower

T ). For N = 1172, we obtain values from αfill ≈ 0.43 at 600K to αfill ≈ 0.24 at 900K. An

effective αnuc ≈ 0.06 is extracted for the late-stage regime at 600K similar to the analysis in

Ref. [21], although we discount its significance. From the trajectory of a single simulation

at 600K (green data), it is evident that the increase in A involves distinct steps in the

late-stage regime corresponding to nucleation of new layers (thus justifying our description

of this regime as nucleation mediated).

For a more complete analysis, we introduce characteristic times: τfill determined when

A/A∞ = 0.45 (reflecting the neck filling stage) and τnuc determined when A/A∞ = 0.85

(reflecting the final nucleation-mediated stage). Arrhenius analysis for τfill yields Eeff ≈

0.75eV. In a simplistic analysis, a corner atom of the {100} facet transfers to the {111}

facet. The barrier for just the first step is Eact = 0.75eV. However, in the second step

to reach the final adsorption site on the {111} facet which is ∆E = +3φ above the initial

site energy, the atom must surmount a barrier of energy c111TD + δES above the final-state

energy. Thus, the effective barrier for atom transfer is Eact = c111TD +δES +∆E = 0.875eV,

comparable to the simulation result, given our neglect of entropic effects. Arrhenius analysis

for τnuc yields Eeff ranging from 0.85eV for N = 402 to 1.10eV for N = 1172, and our

simulation results indicate slightly higher values for N = 1172 at lower T . The value for

N = 1172 is similar to the barrier nucleation of {100} facets for nanocube equilibration and

that analysis also applies here.

Finally, we have also analyzed size scaling, τ111 ∼ Nβ, for the neck filling regime where

β roughly matches the classic continuum value of β = 4/3 for all T . For the late-stage

regime, the exponent, β, instead defined by tnuc ∼ Nβ, increases upon decreasing T from

around the classic value of β = 4/3 for very high T to β ≈ 1.5− 1.6 at 900K to β ≈ 2.8 at

600K. This is behavior analogous to that for nucleation-mediated nanocube reshaping.
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We emphasize that the results for evolution of neck area, A, shown in Fig. 5.6 are typ-

ically obtained from several hundred simulation trials. This reduces statistical uncertainty

and allows precise extraction of characteristic times, which we find exhibit near-perfect Ar-

rhenius behavior for the range of T which is considered. This allows reliable determination

of the associated Arrhenius energy.

We have also considered sintering of equal-sized Ag NCs initially joined with aligned

{111} facets retaining N = 1172. In this case, no transition to late-stage nucleation-

mediated evolution occurs even for lower T . This feature is expected as no low-index {100}

side planes are formed, and no nucleation upon such facets is required (see Ref. [21] and

Supplemental Material [27]). Sintering is faster by a factor of 23 at 600K than for aligned

{100} facets, Eeff ≈ 0.70 − 0.71eV is somewhat below that for the filling stage for aligned

{100} facets, and β ≈ 4/3 for all T consistent with the feature that that evolution is not

nucleation mediated (see Supplemental Material [27]). Finally, we remark that our analysis

for both aligned {100} and {111} facets should be compared with the comprehensive IVA

modeling in Ref. [21], which considers larger NCs than those treated here.

5.4.2 Sintering of Au nanoclusters: Comparison with HRTEM observations

A key aim of modeling studies should be direct comparison with experiment, both for

validation of the modeling and also to elucidate experimental observations. In situ liquid-

cell HRTEM studies are providing increasingly detailed data enabling such comparison,

although caution in interpretation is required, e.g., given possible e-beam effects. One

such previous study presented HRTEM imaging of the sintering of “large” 10 − nm Au

nanoparticles and utilized IVA modeling to elucidate observed behavior [7]. As noted in

Sec. 5.1, IVA includes a free parameter which was adjusted in this analysis to match

the experimental time scale of evolution. In contrast, one key goal of our modeling with

realistic surface diffusion kinetics is to reliably predict this time scale. Our focus is also

on substantially smaller NCs than those considered above. Fortunately, recent HRTEM
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imaging has provided appropriate data on shape evolution for such smaller NCs [8, 9].

We apply our model to analyze sintering of sim4-nm Au NCs slightly laterally displaced as

monitored in recent HRTEM studies by Yuk et al. [9]. In general, when Au NCs merge, they

are not aligned, but a single-crystal structure is subsequently achieved by grain boundary

migration or by NC rotation. However, in one data set from Ref. [9] partly reproduced in

Fig. 5.7(a), the NCs are almost perfectly aligned upon merging, so we model subsequent

evolution in this case.

Figure 5.7: Sintering of ∼ 4–nm Au NCs. (a) HRTEM at 300K. Adapted from Ref. [9]

with permission from The Royal Society of Chemistry. The initial (final) image is 2s (128s)

after impingement. (b) Simulated evolution for N = 4812 at 600K.

However, for this modeling, it is necessary to first prescribe appropriate Au model

parameters. We select c100TD = 0.60eV,c111TD = 0.125eV,c111A = 0.35eV, and c111B =

0.40eV for Au. This choice is based on density functional theory (DFT) analysis of terrace

diffusion barriers [49], and general trends relating terrace and edge diffusion barriers [28].

We select δES = 0.12eV based on studies of Au surface dynamics [50] and semiempirical

energetics [51]. An effective φ = 0.22eV is consistently selected based on either DFT analysis
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of NC energetics [39] or DFT analysis of Au surface energies [52].

For the HRTEM data shown in Fig. 5.7(a), the ∼ 4-nm Au NCs appear to be slightly

laterally displaced or misaligned upon attachment. We mimic this situation in our simula-

tions, where we also choose a total size of N = 4812 roughly matching experiment. We have

shown that the offset somewhat increases the initial rate of neck growth, not surprisingly

since this makes the neck region a stronger sink for capturing atom diffusion from the ends

on the NC pair. Even though we utilize KMC simulation rather than molecular dynamics,

it is still computationally demanding to directly simulate evolution for this larger system

at the experimental T = 300K over the time scale needed to follow the overall sintering

process (which is hundreds of seconds at 300K). However, simulation is much more efficient

at higher T . For purposes of illustration, results for shape evolution at 600K are shown

in Fig. 5.7(b). To connect with experiment, our strategy is to perform simulation for a

range of higher T to determine the relaxation time τfill (using A/A∞ = 0.6) versus T . See

Fig. 5.8. From these results, we extract an effective Arrhenius energy, Eeff ≈ 0.77eV, for

τfill. These results are then extrapolated to estimate τfill ∼ 130s at 300K where we choose

a conventional attempt frequency of ν = 1013s−1. This prediction for the time to achieve a

convex shape is consistent with experiment [9].

Figure 5.8: Arrhenius behavior of the characteristic time, τfill, for neck filling for the sintering

of ∼ 4-nm Au NCs with aligned but laterally offset {111} facets for N = 4812.
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5.5 Summary

In summary, we have developed a predictive atomistic-level stochastic model for far-

from-equilibrium shape evolution of fcc metal NC shapes mediated by surface diffusion.

Significantly, our modeling incorporates a realistic prescription of surface diffusion kinetics.

This requires accurate description of diffusion barriers for a diversity of local environments.

This paper contrasts previous more generic stochastic atomistic modeling with unphysical

prescription of barriers and thus kinetics, and also classic continuum modeling which ex-

hibits fundamental shortcomings in describing behavior on the nanoscale. Our model is

primarily applied to reliably describe reshaping and sintering of faceted Ag NCs. Signifi-

cantly, for the effective Arrhenius energies controlling the T dependence of relaxation times,

we are able to provide an atomistic-level interpretation and analysis. For example, for the

characteristic time for reshaping on Ag nanocubes, we associate the Arrhenius energy with

the effective barrier to nucleation of relatively stable square tetramers on {100} facets. In

addition, in contrast to generic modeling, our approach allows prediction of the absolute

time scale from reshaping, which is key in assessing the robustness of NCs synthesized with

targeted nonequilibrium shapes. This capability is demonstrated by prediction of the time

for sintering of ∼ 4-nm Au NCs as observed in HRTEM studies.
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5.7 Appendices

5.7.1 Appendix A: IVA versus realististic surface diffusion barriers

As noted in Sec. I, accurate description of surface diffusion kinetics, including both

terrace and step edge diffusion, is necessary for realistic and predictive modeling of 3D NC

evolution. Furthermore, the formulation must simultaneously provide an accurate descrip-

tion of behavior on both {100} and {111} facets, noting that these are most prominent

on fcc NCs. Our formulation, used for simulation of surface diffusion mediated 3D NC

evolution, is crafted to incorporate the flexibility to include desired values for both terrace

diffusion and edge diffusion barriers via appropriate selection of c100TD, c111TD,c111A, and

c111B. These values may be obtained from appropriate assessment of experimental data or

directly from ab initio DFT analysis. In contrast, previous IVA based modeling does not

include this flexibility. In fact, we clarify here that IVA imposes extremely unrealistic values

for barriers for these key diffusion processes.

The IVA atom hop rates have the form h = ν exp [−Eact/(kBT )], with Eact = CIVA +niφ

for initial coordination number ni, includes the free parameter CIVA. For modeling of

processes on a specific low-index extended surface, CIVA is typically chosen to ensure that

IVA recovers the terrace diffusion barrier for that low-index surface [28, 53]. However,

a different choice is required for each different low-index surface, so it is not possible to

correctly describe simultaneously terrace diffusion on different facets of 3D nanoclusters.

Consider the case of Ag selecting a NN interaction strength φ = 0.225eV. First, consider

modeling targeting Ag diffusion on Ag {100} surfaces. If one wants to recover a reasonable

terrace diffusion barrier of, say, Ed {100} = 0.425eV [28,31], then since Ed {100} = CIVA +

4φ one must select CIVA = −0.475eV. Consequently, this formulation of IVA imposes a

diffusion barrier on {111} facets of Ed {111} = CIVA + 3φ = 0.20eV, which is double the

true barrier of Ed {111} = 0.1eV [28,54].

Even ignoring this serious failure of IVA to simultaneously describe terrace diffusion
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on different facets, there are additional major shortcomings in the description of key edge

diffusion barriers. For example, there is a dramatic failure to describe step edge diffusion

on Ag{100} surfaces even choosing CIVA to recover terrace diffusion on a Ag{100} facet.

Specifically, the IVA edge diffusion barrier along close packed steps satisfies Ee(100) =

CIVA + δ+ 5φ = 0.650eV (i.e., 53% higher than the terrace diffusion barrier) with the above

choice of CIVA = −0.475eV. However, a reasonable estimate of the actual barrier is given

by Ee = 0.275eV (i.e., 35% lower than the terrace diffusion barrier) [22, 28, 35]. Thus,

these edge diffusion hopping rates predicted by this version of IVA are typically orders of

magnitude lower than actual rates.

Second, for modeling targeting Ag diffusion on Ag{111} surfaces, since Ed(111) = CIVA+

3φ, one must now choose CIVA = −0.575eV to recover a reasonable value of Ed(111) =

0.10eV [28,54]. It follows that this IVA prescription enforces Ed(100) = CIVA+4φ = 0.325eV

substantially below the more realistic value of Ed(100) = 0.425eV noted above. Even

if we just consider diffusion on the Ag{111} surface within this IVA formulation, there

are still significant shortcomings in the description of step edge diffusion. One has that

Ee(111) = CIVA + 5φ = 0.550eV, which is the same for A- and B-type steps, and is well

above the realistic and distinct estimates of Ee(111)|A = 0.275eV and Ee(111)|B = 0.300eV

for the two different types of step edges [33].

The severe consequences of this failure of IVA kinetics (and the success of our treatment)

are illustrated by the results of KMC simulations for the formation during deposition of 2D

epitaxial Ag nanoclusters on low-index {100} and {111} Ag surfaces. Given the artificially

high step edge diffusion barriers in the IVA prescription, this formulation predicts fractal

island structure whereas the actual structure is compact as confirmed by scanning tunneling

microscopy experiments or realistic modeling. See Supplemental Material [27].

Another clear and serious shortcoming of the IVA formulation regarding reshaping of 3D

nanoclusters is that the formulation does not and cannot include any ES barriers. However,

these additional barriers are important in controlling the rate of mass flow between layers
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and facets [28].

5.7.2 Appendix B: Thermodynamics of fcc metal nanoclusters

Our prescription of the energetics of various NC configurations via a lattice-gas model

with NN pairwise interactions of effective strength, φ, is applied to evaluate differences,

Ef −Ei, between energies of initial and final configurations. As noted in Sec. 5.2, support

for the effectiveness of this simple prescription comes from a recent DFT analysis of the

energetics of fcc NCs [39]. The key idea in this paper is that the total energy of the NC can

be decomposed into a sum of energies for the individual atoms, En, where these energies

depend solely on the coordination, n, of the atom. These coordination-dependent single

atom energies are determined in a systematic fashion from DFT calculations considering

mainly atoms at surfaces with different local configurations and coordination numbers. The

key result for various metals is that En varies nearly linearly with n, i.e., En ≈ A − Bn

(with B > 0), over the considered coordination range, n ≥ 3.

Given this behavior, reliable determination of Ef − Ei can be achieved by a model

with NN pairwise interactions if one chooses φ = 2B. (Here we note that an atom with

coordination n is regarded as having n shared bonds of strength φ with NN atoms, so the

energy of half of each of these bonds is associated with the atom.) Such an analysis of

results from Ref. [39] indicates that the effective φ ≈ 0.20, 0.28, 0.38, 0.40, and 0.64eV for

Ag, Cu, Ni, Pt, and Ir, respectively. For Au, En versus n deviates more from linearity with

higher (lower) values of the effective φ for smaller (larger) n, and we select φ = 0.22eV.

We argue that these values predominantly reflect the NC surface rather than bulk ther-

modynamics. This feature is supported by the observation that similar values for the

effective φ can be extracted from DFT results for {111} and {100} surface energies using

γ111 =
√

3φ/a2 and γ100 = 2φ/a2 for the NN interaction model. Here, a denotes the surface

lattice constant. From results of DFT analysis for γ111 using the Perdew-Burke-Ernzerhof

functional [52] one obtains φ = 0.23, 0.31, 0.43, 0.41, and 0.61eV for Ag, Cu, Ni, Pt, and
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Ir, respectively. For Au, one obtains φ = 0.22eV. Quite similar values are obtained using

DFT values for γ100, e.g., yielding φ = 0.21eV for Ag and φ = 0.23eV for Au.

As already indicated in Sec. 5.2, if Ec denotes the bulk cohesive energy, then the above

values for effective φ are far from the choice φ(bulk) = Ec/6 which would recover the bulk

thermodynamics. Specifically, one has that φ(bulk) = 0.49, 0.58, 0.74, 0.97, and 1.16eV for

Ag, Cu, Ni, Pt, and Ir, respectively, and φ(bulk) = 0.64eV for Au.

5.8 Supplementary Material

See Supplementary Material at for further description of: IVA vs realistic simulations of

2D epitaxial NC growth (S1); Ag nanocube reshaping (S2); pinch-off of Ag nanorods (S3);

sintering of Ag NCs with aligned {100} (S4) and {111} (S5) facets; sintering of Au NCs

(S6).
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Abstract

Diffusion and coalescence of supported 3D metal nanoclusters (NCs) leads to Smolu-

chowski Ripening (SR), a key pathway for catalyst degradation. Variation of the NC dif-

fusion coefficient, DN , with size N (in atoms) controls SR kinetics. Traditionally, a form

DN ∼ N−β was assumed consistent with mean-field analysis. However, KMC simulation of

a stochastic model for diffusion of {100}-epitaxially supported fcc NCs mediated by surface

diffusion reveals instead a complex oscillatory decrease of DN with N . Barriers for surface

diffusion of metal atoms across and between facets, along step edges, etc., in this model

are selected to accurately capture behavior for fcc metals. (This contrasts standard bond-

breaking prescriptions which fail dramatically.) For strong adhesion, equilibrated NCs are

truncated pyramids (TP). Local minima of DN sometimes but not always correspond to

sizes, NTP, where these have a closed-shell structure. Local maxima generally correspond
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to N ≈ NTP + 3 for N = O(102). For weak adhesion, equilibrated NCs are truncated

octahedra (TO), and local minima of DN occur for sizes close or equal to those of just

a subset of closed-shell structures. Analytic characterization of energetics along the NC

diffusion pathway (which involves dissolving and reforming outer layers of facets) provides

fundamental insight into the behavior of DN , including the strong variation with N of the

effective NC diffusion barrier.

DOI: 10.1039/c9nr05845a

6.1 Introduction

Smoluchowski Ripening (SR) involving diffusion and coalescence of supported 3D metal

nanoclusters (NCs), also known as Particle Migration & Coalescence (PMC), is of central

importance as a pathway for catalyst degradation. [1–5] Classic studies have analyzed SR

kinetics which is controlled by the size-dependence of NC diffusivity. [1, 2] Consequently,

there has been sustained interest in the variation of the NC diffusion coefficient, DN , with

size N (in atoms). [2, 6] The traditional perception was that DN decreases monotonically

with N . This behavior is consistent with a mean-field analysis for NC diffusion mediated by

uncorrelated hopping of individual atoms across the surface of the NC with single character-

istic rate, h. In this scenario, each hop of a surface atom shifts the NC center of mass (CM)

by δRCM ∼ a/N , where “a” is the surface lattice constant. The dimensionless NC surface

area, A, scales like A ∼ N2/3, and the total rate of surface atom hopping like H ∼ hA. It

is convenient to set h = ν exp [−Es/(kBT )], and Do = aν . Here, ν is an attempt frequency,

Es is the assumed single surface hopping barrier, kB is the Boltzmann constant, and T is

the surface temperature. Then, the mean-field treatment predicts that

DN ∼ H(δRCM)2 ∼ Do exp [−Eeff/(kBT )]N−β

with Eeff = Es and β = βMF = 4/3. (6.1)

https://doi.org/10.1039/C9NR05845A
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Our focus is on diffusion of epitaxially supported 3D NCs where diffusivity is generally lower

than for non-epitaxially supported 3D NCs. [6] Detailed analysis of the epitaxially supported

case is limited. One Kinetic Monte Carlo (KMC) simulation study for 3D epitaxial NCs, [7]

and another for the analogous 2D case, [8] found an oscillatory variation of DN with N , and

suggested that minima correspond to sizes with closed-shell structures. However, subsequent

analysis revealed a much more complex scenario for the 2D case, [9, 10] and no detailed

analysis exists in 3D. Thus, our goal here is to characterize and provide fundamental insight

into the “fine structure” in the variation of DN with N for 3D epitaxial NCs.

Specifically, we develop a stochastic lattice-gas model for diffusion of {100}-epitaxially

supported metallic fcc NCs mediated by diffusive transport of metal atoms across the surface

of the NC. We emphasize that for realistic modeling, not just NC thermodynamics, but also

the multiple barriers for surface diffusion across facets, along step edges and around kinks

or corners, between layers or facets, etc., must be chosen to realistically capture behavior

for fcc metals. [5, 11] KMC simulation of such stochastic modeling allows direct access to

the relevant time scale for surface diffusion, and precise characterization of the variation of

DN with size N and other key control parameters such as temperature, T . However, for

deeper insight into the observed complex behavior, we also identify NC diffusion pathways

(which involve dissolving and reforming outer layers of facets). We provide an analytic

assessment of the associated variation of atomistic-level NC energetics along such minimum

energy pathways, as well as a corresponding coarse-grained continuum analysis.

This article is organized as follows. The stochastic model is described in the next

section, as well as procedure for reliable extraction of NC diffusion coefficient, DN . Then,

we present detailed KMC results for DN versus N for the case of strong NC adhesion

to the substrate, as well as a complementary analytic characterization. Next, we more

briefly analyze NC diffusion behavior for the case of weak NC adhesion. Finally, we provide

additional Discussion including assessment of related systems, and brief Conclusions.
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6.2 Modeling and Methods

6.2.1 Model information

The following provides a description our realistic stochastic lattice-gas model for diffu-

sion of {100}-epitaxially supported metallic fcc NCs. NC diffusion is mediated by diffusive

transport of individual metal atoms across the surface of the NC. This surface diffusion is

described by hopping of under-coordinated atoms to available nearest-neighbor (NN) fcc

sites still connected to the cluster. Thus, we exclude atom detachment particularly from

the contact line at the base of the NC, thereby preserving NC size. With regard to NC

thermodynamics, interactions within the fcc metal NC cluster are described by an effective

NN attraction of strength φ > 0. This prescription was shown in recent DFT analysis to

effectively capture NC surface energetics for many fcc metals. [12] In fact, the value of φ

extracted from this DFT analysis reasonably recovers surface energies, but is much weaker

than that extracted from bulk energetics as one sixth of the cohesive energy, Ec (e.g.,

φ = 0.225eV versus Ec/6 = 0.49eV for Ag). [11] In fact, the bulk cohesive energy is not

incorporated as a parameter into our model. This is not unreasonable since NC diffusion

is controlled by surface rather than bulk thermodynamics and kinetics. Each atom in the

bottom {100} NC layer is regarded as supported by 4 atoms in the top {100} substrate

layer. Adhesion is described by a NN attraction of strength φs = fφ between NC and

substrate atoms. Thus, f measures the strength of adhesion, and f = 1 corresponds to ho-

moepitaxy. We focus on the regime of strong adhesion choosing f = 0.75 (where supported

NCs resemble truncated pyramids), but for contrast more briefly consider weak adhesion

where f ≤ 0.05 (where the supported NCs resemble unsupported Wulff shapes).

The total NC energy, EN < 0, is obtained as the sum of the total interaction energy

within the NC, and the total adhesion energy. Ground state NC configurations have the

minimum EN . Equilibrated NCs exist in excited states with finite probability as determined

by a Boltzmann factor based on EN . In the large-size continuum limit, fluctuations around a
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well-defined equilibrium shape vanish. For negligible adhesion (f ≈ 0), this equilibrium NC

shape corresponds to the Wulff shape of an unsupported NC. For our model, the Wulff shape

corresponds to a regular truncated octahedron (TO) where all edges have equal length. [13]

Equilibrium shapes of {100}-epitaxially supported NCs with significant adhesion are deter-

mined from the Winterbottom construction which truncates a portion of the unsupported

Wulff cluster adjacent to a {100} facet. [13] Specifically, in the continuum regime, when

measured from the center of the unsupported Wulff cluster, the distance to the top {100}

facet, h100, and to the substrate, hsub, are related by h100/γ100 = hsub/(γ100 − βad). Here,

γ100 = 2φa−2 denotes the surface energy of {100} facets, and βad = 4φsa
−2 denotes the

adhesion energy. It follows that hsub/h100 = 1−2f . Negative values mean that the location

of the substrate for the supported NC is above the center of the unsupported NC. See Fig.

6.1. In our atomistic model, equilibrium shapes mimic continuum shapes. See below.

Figure 6.1: Schematics of equilibrium Winterbottom NC shapes for f = 0, 0.05, 0.5, and

0.75.

Diffusion of supported NCs is sensitively dependent on the prescription of the kinet-

ics of adatom surface diffusion. In stochastic lattice-gas modeling, often a simple IVA

bond-breaking prescription is applied to determine the activation barriers for hopping in

diverse local surface environments. [14,15] However, these (and alternative Metropolis type

prescriptions) fail dramatically to describe key features of surface diffusion barriers on fcc

metal surfaces, e.g., the relative magnitude of terrace diffusion on different facets, of terrace

versus step edge diffusion, and of intra- versus inter-layer diffusion. [11] Consequently, we
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apply a refined BEP formalism with sufficient flexibility to capture all key diffusion barriers,

as described in the next subsection. [5, 11]

For specificity, our model parameters are chosen to correspond to Ag. Supported 3D

Ag NCs have been studied on graphite, [16] and on various oxide surfaces [17,18] including

Al2O3, [19, 20] TiO2, [21, 22] and MgO. [23] Theoretical analysis indicates that Ag NC on

MgO(001) exhibits cube-on-cube {100} epitaxy at least for N = 40 to 2800, rather than

{111} epitaxy or a decahedral structure. [24] Thus, Ag/MgO(001) falls within the class of

systems described by our model.

6.2.2 Prescription of surface diffusion kinetics for fcc metal NCs

Realistic prescription of the surface diffusion kinetics is more challenging than that of NC

thermodynamics. [5, 11] Rates for hopping of surface atoms to NN sites have an Arrhenius

form, h = ν exp [−Eact/(kBT )], where the activation barrier, Eact, depends sensitively

on the local environment (for which there are many possibilities). Again T denotes the

surface temperature, and ν is a vibrational attempt frequency. (Typically, one finds that

ν ≈ 1012.5s−1 for fcc metal systems, although the value of this prefactor will not affect

the results presented here.) Below Ei (Ef ) denote the energies associated with an atom

in the initial (final) state before (after) a NN hop. A conventional IVA bond-breaking

form, Eact = E0 − Ei is typically chosen, but this fails dramatically describe fcc metal

surfaces. [5, 11] Thus, we instead choose a generalized symmetric BEP form [11]Eact =

Cα + 1/2(Ef − Ei) with distinct Cα for different classes α of hops, e.g., α = TD terrace

diffusion + attachment/detachment at steps and ED step edge diffusion, and with separate

subclasses for {111} and {100} facets, and also for intra- and interlayer diffusion. Each

class includes the reverse process for every forward process (e.g., detachment as the reverse

of attachment to step edges) in order to satisfy detailed-balance.

The Cα are selected to recover precise value for terrace, edge, and interlayer diffusion

for the metal of interest. See the ESI sec. 1. For Ag, we select CTD100 = 0.425eV,
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CTD111 = 0.10eV, CED111B = 0.30eV, and CED111A = CED100 = 0.275eV for intralayer

diffusion. [11] Here, A and B indicate close-packed {100}- and {111}-microfaceted steps on

{111} facets, respectively. The local geometry of the former is the same as for close-packed

steps on {100} facets. For interlayer diffusion for Ag, our Cα also incorporate an additional

Ehrlich-Schwoebel barrier for downward interlayer diffusion of δES = 0.1eV for close-packed

(but not kinked) steps on {100} facets, and for A (but not B) steps on {111} facets. We use

the same Cα for hopping between the lowest and next highest layer of the NC. For atoms

at the periphery of the lowest layer hopping around the contact line of the NC: (i) the same

Cα are used for strong adhesion; and (ii) Cα are selected by neglecting substrate atoms for

weak adhesion. We also allow atoms to hop to second NN sites in order to round corners

of the contact line base the NC.

As indicated above, our model dynamics allows diffusion of metal atoms across the NC

surface, but not detachment of atoms from the NC at its base (which would be followed by

diffusion across the substrate, and possible reattachment to the NC). The rationale is as

follows. The effective barrier for NC surface diffusion (detachment) is determined by the

sum of: (i) the energy change upon moving an atom at a kink site on the NC to a facet on

the NC (to the substrate); and (ii) the terrace diffusion barrier across the facet (across the

substrate). The effective barrier is significantly higher for detachment justifying our neglect

of this process. See the ESI sec. 2 for further discussion.

6.2.3 KMC simulation of NC diffusion

KMC simulation, which implements the various hopping processes with probabilities

proportional to their physical rates, allows tracking of the evolution of the configuration of

the NC as it diffuses across the surface. From such simulations, one can extract the lateral

position, rCM(t), of the NC center of mass (CM) at time t. Then, δrCM(δt) = rCM(t +

δt)−rCM(t) gives the CM displacement in a time interval δt. One defines a time-dependent

diffusion coefficient for the NC of N atoms as DN (δt) = 〈rCM(δt) · rCM(δt)〉 /(4δt). Gen-
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erally, DN (δt) decreases from a “high” value for short δt to a plateau value as δt → ∞,

which corresponds to the true diffusion coefficient, DN = lim δt→∞DN (δt). The decrease

in DN (δt) corresponds to subtle “back-correlations” in the walk of the cluster CM. [10]

Simulations readily yield extensive statistics and thus precise values for DN (δt) for small

δt, but not so readily for δt = δtp sufficiently large that DN (δtp) has reached its plateau

value. See ESI sec. 3. Thus, it is necessary to run simulations for an extended total time

of 200 δtp in order to precise determination NC diffusivity.

Figure 6.2: Diffusion trajectory from KMC simulation for a closed-shell Ag TP with size

N = 50 for the case of strong adhesion with f = 0.75 at 900K.

Fig. 6.3 shows KMC simulation results for a typical diffusion trajectory for the CM

of an NC of size N = 50 atoms for the case of strong adhesion with f = 0.75 at 900K.

During diffusion, the NC can be regarded as remaining in equilibrium state. However,

as noted above, the NC in this state does not just correspond to a fixed ground state NC

configuration, but rather samples excited states. In the ESI sec. 4, we show snapshots which

illustrate the NC evolving through a sequence of configurations during diffusion, and we also

provide a movie of NC diffusion. Further discussion of key configurations accessed during
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diffusion is provided in sec.6.3 and 6.4. For the system under consideration here, our analysis

will reveal a complex dependence of DN on size N . It will prove instructive to consider an

effective activation barrier, Eeff > 0, for NC diffusion where DN ∼ exp [−Eeff/(kBT )] for

fixed N at various T . In contrast to the MF treatment, Eeff = Eeff(N) will depend strongly

on N , and this dependence will in fact induce the complex variation of DN with N .

6.3 Results for Strong Adhesion f = 0.75

6.3.1 Ground-state NC shapes with strong adhesion with f = 0.75

The adhesion energy per atom in the lowest NC layer is 4fφ given the four supporting

substrate atoms, which equals 3φ for f = 0.75. Thus, conveniently, the total NC energy EN

is an integer multiple of φ. The continuum Winterbottom NC shape is a truncated square

pyramid (TP) where the length of the edges of the top square {100} facet equals that of

the edges between {111} side facets. See Fig. 6.1. For the atomistic model, ground state

structures tend to mimic the continuum shape. Particularly stable ground state structures

correspond to a subset of closed-shell k-layer TP with bases of m × n atoms, denoted by

TPm×n,k. For these TPm×n,k structures, the total number of atoms, N = Nm×n,k, is given

by

Nm×n,k = akmn− bk(m+ n) + ck,

where ak = k, bk = k(k − 1)/2, and ck = (2k − 1)k(k − 1)/6, (6.2)

and the total NC energy, EN = Em×n,k < 0, is given by

Em×n,k = − [Akmn−Bk(m+ n) + Ck]φ

where Ak = 6k − 1, Bk = (3k − 2)k, and Ck = 2k2(k − 1). (6.3)

Ground state TPm×n,k structures have m = n square or m = n+ 1 near-square bases, and

also k ≤ min(n,m)−1 so that the top layer is 2×2 or larger. Corresponding, ground states

sizes in bold font are:



www.manaraa.com

149

Nm×n,1 = 4, 6, 9, 12 (degen), (but not 16,...) for m× n = 2× 2, 3× 2, 3× 3, 4× 3, (but not

4× 4,...);

Nm×n,2 = 13, 18, 25, 32, 41, (but not 50,...) for m× n = 3× 3, 4× 3, 4× 4, 5× 4, 5× 5 (but

not 6× 5,...);

Nm×n,3 = 29, 38, 50, 62, 77, 92, 110, 128, 149 (degen), (but not 170,...) for m×n = 4×4, ..., 5

(but not 9× 8,...);

Nm×n,4 = 54, 68, 86, 104, 126, 148, 174, for m× n = 5× 5, ..., 8× 8,...);

Nm×n,5 = 135, 160, (but not 90 or 110) for m×n = 7× 7, 8× 7, ... (but not 6× 6 or 7× 6...)

etc.

for single- double-, triple-, quadruple, quintuple-layer NCs, etc. The particular stability of

these sizes is quantified below. Sizes are also indicated which are not ground states, and

N = 12 & 149 are degenerate with higher-layer structures.

6.3.2 KMC results for DN versus N

Analysis of the type of simulation data for the trajectories of {100}-epitaxially supported

3D Ag NCs for strong adhesion with f = 0.75 shown in Fig. 6.2 produces the results shown

in Fig. 6.3 (middle frame) for the variation of DN with N up to N ∼ 190. Behavior for

larger sizes is reported in the ESI sec. 5, and is briefly discussed in sec. 6.3.5. A complex

oscillatory variation is most evident at the lowest temperature shown, T = 700K. These

features are diminished by entropic effects at higher T , as shown for T = 800K and 900K.

The vertical lines mark the sizes for the non-degenerate closed-shell ground state TPs listed

above with sizes denoted N = NTP. Often, but not always, these correspond to local

minima in DN . Often, local maxima in DN correspond to N = NTP + 2 or NTP + 3 in the

size range shown. Closed-shell TPs are expected to be relatively stable. Indeed, a measure,

δE = δEN , of the deviation from the continuum form of the energy per atom, also shown in

Fig. 6.3 (top), correlates with the variation of DN (i.e., relatively high average coordination

per atom implies relatively low diffusivity). From the variation of DN with T for fixed N ,
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we can extract from KMC data an effective barrier, Eeff(N), for NC diffusion for each N as

is also shown in Fig. 6.3 (bottom). It is instructive to compare Eeff for different classes of

NCs where N = NTP +n for small n: Eeff(NTP +n) ≈ 1.5, 1.1, 0.85, 0.75eV decreases as n

increases from n = 0, 1, 2, and 3, respectively, as is most clearly evident for NTP = 50, 62,

77, and 92.

Figure 6.3: Top: δE = [EN − EN (cont)] /N where EN (cont)/φ = 0.529 − 1.496N1/3 +

3.977N2/3 − 6N recovers EN for TP3×3,3, TP5×5,3, TP7×7,4, and TP9×9,5. Middle: KMC

results for DN versus N for an Ag NCs with f = 0.75. Bottom: Effective barrier versus N

for NC diffusion extracted from the T -dependence of DN from KMC highlighting several

cases for NTP (blue), NTP + 1 (purple), NTP + 2 (red), NTP + 3 (green); −Eeff is plotted so

that peaks and valleys correspond to those of DN . Note: vertical lines correspond to sizes

for closed-shell ground state truncated pyramids.

Finally, we note that while many previous studies of NC diffusion have focused on simple

size scaling, DN ∼ N−β, such a routine analysis is not applicable here given the complex

oscillatory behavior. However, one could consider the partial scaling of DN with N , e.g.,
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restricting N to local maxima (max) of DN . Based on the three maxima at N = 65, 80, and

95 in Fig. 6.3, one obtains βmax ≈ 3.1, 2.6, and 2.1 at 700K, 800K, and 900K, respectively,

which are higher than but shifting towards βMF = 1.33 for increasing T .

6.3.3 Mechanism & energetics for NC diffusion

To elucidate the behavior of DN , we first describe the mechanistic pathway leading to

long-range NC diffusion for the case where NC ground states are closed-shell TPs. The

pathway involves dissolution of an outer layer of the NC on a single facet, transfer of those

atoms to another side of the NC, and formation of a new complete outer layer on that

side. Specifically, for a square n n base, the outer layer is transferred to the opposite

side. For a rectangular n × (n + 1) base, the outer layer on a short side is transferred to

one of the other three sides. Atom transfer between facets generally occurs across edges

between adjacent side {111} facets, rather than across the top {100} facet or around the

base of the NP. The latter are kinetically inhibited by high diffusion barriers in our model

(a feature which dominates the thermodynamic preference for adatoms to reside on {100}

versus {111} facets). Complete transfer of an outer layer recovers the initial closed-shell

ground-state structure, but with shifted CM, thereby leading to long-range NC diffusion.

The above process can be quantified analytically by tracking the energy change, ∆E(q),

as a function of the number, q, of atoms transferred between different sides of the NC for

the minimum energy path (MEP). The MEP has the smallest ∆E(max) = maxq∆E(q). By

symmetry, ∆E(q) = ∆E(qtot−q), where qtot = k(2n−k+1)/2 is the total number of atoms

in the facet supplying atoms with base with of n atoms and height of k layers. Examples

are provided in Fig. 6.4 (black curves) for TP5×5,3 (NTP = 50), TP7×6,4 (NTP = 104), and

TP8×8,5 (NTP = 190) with ∆E(max) = 4φ, 5φ, and 6φ, respectively. ∆E(max) gives a

measure of the difficulty of mass transfer, and thus of NC diffusion (but it does not account

for the details of surface diffusion kinetics or entropic effects).

Analysis is more complex for non-closed or open-shell TPs which one generally can
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Figure 6.4: Analytic determination of ∆E(q) versus q for close-shell NCs with NTP = 50,

104, and 190. Black curves show ∆E by comparing states before and after an atom transit.

Red dashed curves shows ∆E during an atom move between facet 1 and 2.

regard as a closed-shell TP with an additional incomplete layer on one facet. Consider the

following two-stage diffusion pathway. In the first stage, atoms are transferred to complete

an incomplete 2D layer on a facet labeled 2 from a complete facet labeled 1 on the opposite

side. In the second stage, the incomplete layer now existing on facet 1 is transferred to

facet 2. Then, the original NC structure is recovered, but with shifted CM. ∆E(q) versus q

has a different form in each stage, but vanishes at the end of each stage. See below. Other

cases involve shifting the incomplete layer to an adjacent (rather than the opposite) side

facet. Even more complicated scenarios can occur in some cases where the ground state
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NC structure is k-layer, but the diffusion path with the lowest ∆E(max) goes through a

(k − 1)-layer NC configurations. One example is for N = 66 where the ground state is a

4-layer structure, but the optimum diffusion pathway goes through 3-layer structures. See

ESI sec. 6.

Fig. 6.5 provides comprehensive analytic results for ∆E(max) versus N up to N = 110

for both open- and closed-shell TPs. ∆E(max) for closed-shell TPs correspond to local

maxima, and the ∆E(max) variation with N correlates reasonably with that of DN . Fig.

6.5 also indicates a slow increase in ∆E(max) with N , somewhat obscured by the strong

oscillatory behavior. This feature will be elucidated below. ∆E(max) just characterizes the

thermodynamics rather than the kinetics of the NC diffusion process.

Figure 6.5: Variation of ∆E(max), ∆E(max+), Eeff(analytic), and Eeff(KMC) with N .

Vertical lines indicate sizes for closed-shell ground state TPs.

To assess kinetics, we note that ∆E(q) just describe energies relative to the ground state

after each transfer of an adatom between facets and incorporation into a growing 2D layer.

Thus, naturally the system energy is higher mid-atom transfer, and thus the actual energy

barrier which the system must surmount for NC diffusion is higher. For large NCs, the

increased barrier will reflect energy difference of 3φ between an isolated atom in transit at

a 3fh site on a {111} facet and that atom incorporated into a kink site at the periphery of
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an incomplete layer. However, for smaller NCs, this energy difference is often 2φ. Fig. 6.4

also shows the energy profile along the MEP incorporating energies mid-atom transfer as a

dashed red line, and Fig. 6.5 also shows the corresponding boosted ∆E(max+) versus N.

Finally, the actual effective barrier for Eeff for the above process must add a diffusion barrier

which is typically but not always equal to that for terrace diffusion on {111} facets of 0.1eV

for Ag. This analytic estimate of Eeff(analytic) versus N is also shown in Fig. 6.5. Again

we caution that this analysis does not account for entropic effects. The analytic treatment

is successful in capturing the key features of our KMC estimate, Eeff(KMC) (reproduced

from Fig. 6.2).

6.3.4 Continuum analysis of energetics

Fig. 6.5 indicates a slow increase in ∆E(max) with N , somewhat obscured by the

strong oscillatory behavior. To elucidate this trend, and the variation of ∆E(q) with q, it is

instructive to perform a continuum analyses for behavior in the large NC size regime. For

a closed-shell (CS) TP, Fig. 6.6 shows schematically the process of transferring atoms from

an initially complete outer layer on one facet to another facet. One issue is the shape of 2D

island constituting the incomplete layer. This island is bounded by close-packed step edges

on the sides and top as shown in Fig. 6.6, and these have the same step energy σ = φ/a.

For our model with f = 0.75, the higher coordination of atoms on the bottom step at the

contact line with substrate atoms dominates the weaker binding strength to those atoms

resulting in a vanishing effective step energy. See ESI sec. 7. With these step energies,

minimization of total 2D island step energy for fixed island area reveals that the minimum

energy shape has equal length step edges on the sides and top, and double that length on

the bottom. Thus, the equilibrium 2D island shape is identical to the overall side facet

shape of the TP. Given this island shape, it is straightforward to determine the change in

system energy,

∆E(x)|CS = 3σl
[
(1− x)1/2 + +x1/2 − 1

]
with x = a/atot, (6.4)
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as a function the fraction, x, of atoms transferred to the new facet. This form shown in

Fig. 6.6 mimics that of the discrete model in Fig. 6.3. It follows that the maximum ∆E(x)

for x = 1/2 satisfies

∆E(max)|CS = (
√

2− 1)3σl ≈ 1.24σl ∼ N1/3, (6.5)

reasonably tracking actual values in Fig. 6.5, and elucidating the slow increase in ∆E(max)

with N .

Figure 6.6: Continuum analysis of energy change upon atom transfer for a closed-shell TP.

Dashed line shows initial complete side facet layer on the TP which shrinks during atom

transfer (dark gray) leading to growth of an incomplete layer (also dark gray) on the other

facet. The variation in energy is also shown (right).

Next, we more briefly present a continuum treatment for open-shell (OS) TPs. As

discussed above, the mechanism for mass transfer leading to NC diffusion has two stages.

First, atoms are transferred from a complete facet 1 to grow an initially incomplete layer

on facet 2 (which becomes complete). Second, the incomplete layer remaining on facet

1 is transferred to facet 2. Fig. 6.7 shows the case where the dimensions of the initial

incomplete layer are smaller by a factor of r than those of the complete facet. Here, x1

(x2) denotes the fraction of atoms transferred in the first (second) stage. Evaluating the

energy change as a function of the amount of material transferred (see ESI sec. 8), one finds

that ∆E(max1)|OS =
[√

2(1 + r2)1/2 − r − 1
]

3σl in the first stage, and ∆E(max2)|OS =

3(
√

2− 1)rσl in the second. The effective barrier ∆E(max)|OS = max j∆E(max j)|OS for

the open-shell TP is below ∆E(max)|CS for a closed-shell TP for all 0 < r < 1, consistent
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with the lower ∆E(max) for open-shell TPs shown in Fig. 6.5. The smallest value of

∆E(max)|OS = 3(
√

2− 1)σl/(2
√

2) ≈ 0.439σl occurs for r = 1/(2
√

2) ≈ 0.354.

Figure 6.7: Continuum analysis of energy change upon atom transfer for an open-shell TP.

Dashed lines in stage 1 show initial complete layer (incomplete layer) on facet 1 (2) which

shrinks (grows) during atom transfer. Dashed lines in stage 2 show initial incomplete layer

on facet a which shrinks during atom transfer.

6.3.5 Local minima and maxima of DN

As noted in sec. 6.1, a general expectation in previous studies [7,8] both for 2D and 3D

epitaxially supported NCs is that NCs with closed-shell ground state correspond to local

minima in diffusivity. However, this expectation is not realized in 2D, [9, 10] and needs

critical assessment in 3D. The above analysis of energetics 3D {100}-epitaxially supported

Ag NCs shows that generally closed-shell ground state TPs correspond to local maxima in

∆E(max) and related quantities, at least for smaller N . This feature is compatible with

local minima in DN occurring for these sizes N = NTP. Nonetheless, our precise KMC

results for DN in Fig. 6.2 reveal that local minima in DN can occur for sizes other than

N = NTP. Specifically, these sizes include N = NTP − 1 and NTP − 3 (at least for larger

NTP). To explain this behavior, note that for NTP = 104, 110 or 126, Eeff(analytic) actually

has the same local maximum value for N = NTP and NTP − 1. Also, if Ω0 denotes the



www.manaraa.com

157

ground state degeneracy, then one has Ω0 = 1 for N = NTP with a square base versus

Ω0 = 8 for N = NTP − 1. Finally, let ΩTS denote the degeneracy in the transition state

at q ≈ qtot/2 where half a complete layer has been transferred from one side of the NC to

another. Then, based upon the heuristic estimate [25]

DN ∼ (ΩTS/Ω0) exp [−Eeff(analytic)/(kBT )] , (6.6)

it follows that the higher ground state degeneracy for N = BTP − 1 results in lower DN

relative to N = NTP. Here, we use that the variation of ΩTS between N = NTP and NTP−1

is not as great as for Ω0 (see ESI sec. 9). The same argument applies comparing DN for

NTP = 104 and NTP − 3 = 101. There are examples where Eeff(analytic) for N = NTP − n

with small n is lower than for N = NTP, and yet DN is also lower. In these cases, strong

entropic effects must predominate.

As noted above, local maxima in DN tend to occur for N = NTP + 3 for larger sizes

with N = O(102). Consistently, Eeff displays a local minima for these sizes corresponding

to local minimum in ∆E(max) for NTP + 3 or NTP + 4. For these sizes, the ground state

corresponds to a small 2D cluster of 1, 2, 3,... atoms on a facet of a closed-shell TP. The

presence of this small 2D cluster naturally facilitates initial transfer of atoms from another

complete side of the NC, thereby reducing ∆E(q), ∆E(max), and related quantities.

Finally, we briefly comment of behavior of DN for larger sizes, which is reported in

the ESI sec. 5. The basic features observed in the smaller size range up to N ≈ 190 are

preserved, i.e., complex oscillatory decay of DN versus N . However, it should be noted

that local minima in DN do not occur for all sizes with closed-shell ground states, but

only at or near a subset of these. A similar feature is manifested for the case of weak

adhesion described in sec. 6.4. An effective criterion to assess the subset of closed-shell

sizes corresponding to local minima in DN is again provided by (the occurrence of local

minima in) the readily calculated quantity δE. See ESI sec. 5.
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6.4 Results for Weak Adhesion f ≤ 0.05

6.4.1 Ground-state NC shapes with weak adhesion where f ≈ 0

The Winterbottom shapes for smaller sizes N = O(102) when f ≈ 0 will roughly

correspond to that of unsupported Wulff clusters. For certain sizes, these correspond to

closed-shell Truncated Octahedra (TO) bounded by {111} and {100} facets. Let n111 (n100)

denote the number of atoms on edges between adjacent {111} facet pairs (adjacent {111}

and {100} facets). Then, the symmetric regular TO where n111 = n100 = n with magic

sizes [26]

NTO(n) = 16n3 − 33n2 + 24n− 6 = 38,201,586, ... for n = 2, 3, 4, ... (6.7)

are especially stable. Also particularly stable are asymmetric TO, denoted TO+, where

n = n111 = n100 + 1 and [27]

NTO+(n) = 16n3 − 63n2 + 84n− 38 = 79,314,807, ... for n = 3, 4, 5, ... (6.8)

A recent analysis revealed 49 additional sizes of various asymmetric closed-shell TO (in-

cluding TO+) between each consecutive pair of magic regular TO sizes, which are also

relatively stable compared to non-closed-shell structures. [28] For each of these sizes be-

tween NTO = 38 and 201, there is a corresponding size between NTO = 201 and 586, etc.,

so structures repeat quasi-periodically. For example, the closed-shell structure for N = 244

corresponds to that for N = 52; the N = 314 TO+ corresponds to the N = 79 TO+.

Excitation of a closed-shell structure by moving a corner atom to a {111} ({100}) facet

increases the energy by Eex = 3φ (2φ). Given the restricted number, M , of adsorption sites

on facets for the NC sizes considered here, it follows that exp [−Eex/(kBT )]M � 1 so the

ground state structure predominates for 700K.

6.4.2 KMC results for DN versus N

Next, we describe briefly analysis of diffusion of supported NCs with weak adhesion

corresponding to f ≤ 0.05. Fig. 6.8 (middle frame) shows the variation of DN with N



www.manaraa.com

159

for {100}-epitaxially supported 3D Ag NCs at T = 700K for weak adhesion with f = 0.05

(and with f = 0 where the NC is constrained to be attached to the substrate). A complex

oscillatory variation is evident. The vertical lines mark the sizes for the symmetric TO and

TO+ listed in sec. 6.3, as well as all other less symmetric ground state closed-shell TO.

Sizes associated with (or sometimes close to) symmetric regular TO and to TO+ correspond

to strong local minima in DN , and sizes close to a restricted subset of the other closed-shell

ground state TO correspond to less prominent local minima. For sizes associated with these

minima, the closed-shell TOs are relatively stable. A measure, δEN , of the relative energy

per atom, also shown in Fig. 6.8 (top), correlates reasonably with the variation of DN with

N .

Figure 6.8: Top: δE = [EN − EN (cont)]/N where [28]EN (cont)/φ = −1.59 + 0.061N1/3 +

7.554N2/3 − 6N recovers EN for regular TO with N = 38, 201, 586, and 1289. Middle:

KMC results for DN versus N for an Ag TO at 700K for f = 0.05 (black) and f = 0 (red).

Bottom: Analytic results for −∆E(max)/φ, where the negative sign is included so that

peaks and valleys correspond to those of DN . Note: vertical lines correspond to sizes for

closed-shell structures, with those for TO, TO+, and other particularly stable structures,

indicated as thicker lines.
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6.4.3 Mechanism & energetics for NC diffusion and continuum analysis

To elucidate the behavior of DN , we first discuss the mechanistic pathway for long-

range NC diffusion where ground states are closed-shell regular TOs. One pathway involves

dissolution of the outer layer of two vertical {100} facets (on the left and center in Fig.

6.1) and two {111} facets (on the left in Fig. 6.1), transfer of those atoms around the

NC surface, and formation of a new complete outer layer on the other two vertical {100}

facets and on the two {111} facets on the opposite side from those donating atoms. (There

are four other {111} facets which remain largely unchanged.) Clearly, this process is more

complex than that described for diffusion of closed-shell TP with f = 0.75. Nonetheless,

analytical quantification is still possible tracking the energy change, ∆E(q), as a function

of the number, q, of atoms transferred along the MEP. By symmetry for regular TO,

∆E(q) = ∆E(qtot− q), where qtot is the total number of atoms transferred. The maximum

value, ∆E(max), of ∆E(q), again gives a measure of the difficulty of the process (not

accounting for the details of surface diffusion kinetics or entropic effects).

The additional challenge here compared to the analysis for TP with f = 0.75 is the

variety of possibilities for transferring atoms which must be considered to determine the

MEP and ∆E(max). The general principle, as for f = 0.75, is to select atoms to transfer

which break the minimum number of bonds and to arrange them on the receiving facet to

create the maximum number of bonds. As an example, for NTO = 38, one removes atoms

from a {111} then a {100} then a {111} and finally a {100} facet, and builds up layers in

the reverse sequence (first on a {100} facet, etc.) to obtain ∆E(max) = 5φ. See ESI sec.

10 for further discussion and detailed analysis for NTO = 201.

For the less symmetric closed-shell TO, {100} facets generally have multiple different

sizes and shapes. In this case, a separate analysis of ∆E(q) is performed for each pos-

sible type of supporting facet. The minimum ∆E(max) from these different possibilities

is selected. Results from extensive analysis of ∆E(max) for regular and less symmetric

closed-shell ground state TO are reported in Fig. 6.8 (lower frame).
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We do not present a detailed continuum analysis here. However, from the formalism

presented for f = 0.75, it is clear that irrespective of the detailed pathway for atom transfer,

one has that ∆E(max) ∝ φl/a ∼ N1/3. This slow increase in ∆E(max) with N is reflected

in Fig. 6.8 (bottom), again somewhat hidden by oscillatory structure.

6.4.4 Local maxima and minima of DN

Regular TO for N = 38, 201, etc. and TO+ for N = 79, 314, etc., are well recognized

as being particularly stable, so it is not surprising that DN has prominent local minima

reflecting these sizes. However, the prominent oscillatory structure of DN is not determined

by TO and TO+ alone, but by augmenting these with a subset of less symmetric closed-

shell ground state TO. These less symmetric closed-shell TO still have enhanced stability

measured by prominent local minima in δE, and prominent local maxima in ∆E(max),

relative to nearby closed-shell TO. Examples include N = 52 and 244 which correspond

to “elongated” TO, and N = 61 and 269 which have a slab-like structure with 3-fold

symmetry. See ESI sec. 11. The variation in DN repeats quasi-periodically matching

the repeat of closed-shell ground states described above between each pair of magic sizes.

Thus, prominent minima at N = 38, 52, 61, and 79 are repeated at N = 201, 244, 269, and

314, respectively. Prominent local maxima in DN often correspond to inhibited stability

as measured by δE, and somewhat more prominent local minima in ∆E(max). These also

repeat quasi-periodically.

6.5 Discussion

Complex oscillatory decay of diffusivity, DN , with N is evident in the above analyses

for both strong and weak adhesion. In fact, this behavior applies more generally. We

have also considered moderate adhesion with f = 0.5 where the continuum Winterbottom

shape of supported NC corresponds to half of a Wulff cluster. See Fig. 6.1. Closed-shell

ground state structures for f = 0.5 in the atomistic model up to N = O(102) sometimes
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correspond to TP, and sometimes to TP with lower corner atoms removed. KMC reveals

oscillatory decay of DN . Local minima do not always correspond to closed-shell ground

states. Here, we find that ∆E(max) and Eeff exhibit “flat” local maxima corresponding

several consecutive N (rather than maxima just occurring just at isolated sizes with close-

shell ground states), explaining why open-shell structures can have the lowest DN . On the

other hand, local minima in ∆E(max) and Eeff often occur for a single N , or consecutive

pair of N , and correspond to local maxima in DN . See ESI sec. 12. In addition, we assess

behavior for smaller f = 0.17 corresponding to the relatively weak adhesion of Ag NCs on

MgO(001). [18] In this case, the oscillatory decay of DN with N is similar to that found for

f ≤ 0.05. See ESI sec. 13.

The observed oscillatory decay of DN with N appears in marked contrast to the tra-

ditional picture of algebraic scaling DN ∼ Do exp [−Eeff/(kBT )]N−β, where mean-field

analysis gives that Eeff is size-independent, and βMF = 4/3. In fact, our analysis shows that

the effective barrier for diffusion has a strong oscillatory size dependence, with an overall

increase with N like Eeff ∼ N1/3. This corresponds to faster than algebraic asymptotic de-

cay of DN for large N . Analogous observations have been made for NC reshaping. [14, 29]

Despite this feature, we have shown that for strong adhesion, f = 0.75, an effective β can

be reasonably extracted from selected peaks of DN (for a fixed range of sizes). Reported

results show this βeff decreasing from 3.1 at 700K to 2.1 at 900K. Furthermore, oscillations

in DN disappear for sufficiently high T , and classic mean-field scaling βeff → 4/3 of DN is

recovered. This behavior can be understood given that the structure of supported NCs be-

come less facetted and more irregular with a randomly rough surface as T increases. In this

regime, surface hopping becomes uncorrelated as assumed in the mean-field analysis. This

type of recovery of mean-field behavior for increasing T is a general phenomenon applying

for any adhesion strength.

As an aside, for diffusion of 2D epitaxial NCs, mean-field scaling is recovered asymptot-

ically as N → ∞ for any T (not just as T → ∞). This fundamental difference arises from
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the feature that 2D NCs, in contrast to 3D NCs, are not facetted in the large-N continuum

regime.

One could consider {111}- rather than {100}-epitaxially supported 3D fcc metal NC.

Now, each atom in the lowest layer is regarded as supported by three atoms in the substrate,

again with an effective NN substrate-NC atom attraction of φs = fφ. Then, the distance to

the top {111} facet, h111, and to the substrate, hsub, are related by hsub/h111 = 1− 2f . By

analogy with f = 0.75 for the {100}-supported case, the Winterbottom shape for f = 2/3

is a truncated hexagonal pyramid where the edge length for the top hexagonal {111} facet

matches that of the edges between the six alternating {100} and {111} side facets. For f ≈ 0,

the equilibrium shape is a Wulff TO, now supported on a {111} facet. Behavior of diffusivity

in these cases is analogous to that for {100}-supported NCs with complex oscillatory decay

in DN versus N , and where again detailed insight comes from an atomistic-level analysis of

energetics along the MEP or from a continuum analysis.

Finally, some additional comments are appropriate on T -dependence of DN , and in

particular on the disappearance of oscillations for high T . Oscillatory structure relies on the

distinction between closed-shell and other NC structures. For sufficiently low T , NCs with

closed-shell ground states will most likely be found in those configurations as discussed above

accounting for excited-state Boltzmann factors and configurational degeneracy. However,

for high T , the NC will most likely be in a non-closed-shell excited state. This type of

entropic effect diminishes distinction between open- and closed-shells, and thus degrades

the oscillatory fine structure of DN versus N .

6.6 Conclusion

Our KMC simulation analysis of the diffusion of epitaxial supported 3D NCs reveals

a ubiquitous oscillatory decay of DN versus N . This behavior is in marked contrast to

the traditional picture of algebraic decay, DN ∼ N−β. While KMC simulation precisely

quantifies DN , it does not necessarily offer fundamental insight into the origin of behavior.
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However, such insight is provided by our identification of the mechanistic pathway for NC

diffusion, i.e., facet dissolution and reformation, together with a comprehensive analytical

characterization of the energetics along the minimum energy pathway (MEP) for this pro-

cess. A coarse-grained continuum analysis of MEP energetics provides additional insight,

particularly regarding the increase in the effective barrier for NC diffusion with size.

For diffusion of either supported 2D or 3D epitaxial NCs exhibiting oscillatory decay, it

is natural to anticipate that local minima correspond to sizes with closed-shell NC ground

state structures with sizes N = NCS. [7,8] Our analysis does reveal some correlation between

local minima in DN and closed-shell structures. However, for strong adhesion, we find local

minima for sizes N = NCS − 1 and NCS − 3 and explain this feature as due to higher

ground state degeneracy for these sizes relative to closed-shell NCs. For moderate and

weak adhesion, local minima only correlate strongly with a subset of closed-shell structures.

Thus, a comprehensive and fundamental understanding of the fine structure of DN versus

N necessarily requires the type of analytic characterization of energetics along MEP for

diffusion provided here.

Finally, we remark that our results for DN versus N can provide input to analysis of SR

kinetics of distributions of supported NCs. We have noted the importance of this process

for catalyst degradation. However, it might also be noted that under reaction conditions,

adsorption of reactants on the NC surface can alter both NC surface thermodynamics and

diffusion kinetics, and thus NC diffusivity. Nonetheless, the current study of NC diffusion

in a vacuum environment is a valuable precursor to understanding of such behavior in more

complex environments.
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CHAPTER 7. GENERAL CONCLUSIONS

In this work, we explored important issues about Smoluchowski ripening (particle migra-

tion and coalescence). As we stressed, such ripening process is a key mechanism mediating

the coarsening and degradation of catalysis or other optical array of nanoparticles. Ki-

netic Monte Carlo simulations were applied to various systems to compare and verify our

theoretical approaches.

Our discussion started with 2D nanoislands on (100)-expitaxial surface with a focus

on size N dependence of diffusion coefficient DN in Chapter 2. The dependence of size

9 ≤ N ≤ O(102) with parameters modeling Ag nanoislands were studied. Instead of a

monotonic decrease with size increases predicted by classical mean field theory DN ∼ N−β,

we discovered a complex oscillatory feature of DN . First of all, two types of diffusion

pathways with different effective activation energy barriers Eeff are identified: facile diffusion

(FA) and nucleation-mediated diffusion (NM). FA with Eeff = Ee + 2φ+ δ was observed for

the sizes Np + 1 and Np + 2, with Np be sizes of a square or rectangle island. Such diffusion

pathway leads to a higher diffusion coefficient compared to NM with Eeff = Ee+. All other

sizes N 6= Np + 1 nor Np + 2 diffuse through NM pathways. Further against intuition, size

Np + 3 instead of Np have a lower DN among comparable sizes. Through utilizing integer

partition function, we performed combinatorial analysis of the number of the ground-state

and low-lying state cluster configurations. With this, impact of the entropic effect on DN

was accounted and predicting the oscillatory features precisely. Furthermore, the classic

value of β = 3/2 is recovered for N ∼ O(103) with Ag parameters in room temperature.

The analysis was extended in Chapter 3 to periphery diffusion diffusion of 2D nanopit (or
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vacancy island). The oscillatory behavior is also observed but with absence of FA diffusion

due to the absence of low excitation diffusion pathway for nanopit. In this work, we further

compare our simulation results with data from more than one experimental groups. We find

effective size-scaling exponents of βeff ≈ 1.05 for island, βeff ≈ 1.17 for nanopits consistent

to βeff ≈ 1.15 for island diffusion from ORNL experiment.

From 2D system, we move on to 3D systems in the rest of the thesis. Starting with

a study of equilibrium shape of nanocrystals (NCs) in Chapter 4. Beyond the continuous

regime, the traditional Wulff construction approach is not sufficient to predict all energeti-

cally favorable closed-shell structures. We identified exactly 49 sizes N with some degener-

acy for a 70 distinct closed-shell structures in total between two major Wulff magic sizes.

Each of the sizes correspond to a local minima of the energy per atom, which is compatible

with other theoretical studies through different approaches. Besides giving us insight in

future studies related to SR, the result leads to a realistic description of polydisperse NC

distribution reflecting thise utilized in self-assembly experiments.

With the understanding of equilibrium shape in discrete regime, we explored the re-

shaping processes of 3D NCs in Chapter 5. In this work, we developed a stochastic model

in atomistic-level for the surface diffusion of fcc metal NC. Instead of the generic modeling

(simple bond counting approach) with unphysical prescription of barriers of kinetics. Our

models incorporates with realistic prescriptions based on experiments observations, giving

description of energy barriers of surface diffusion depending on various local atomistic en-

vironments. It covers three types of far-from-equilibrium systems. First type of process

presented was reshaping of a single far-from-equilibrium Ag nanocube. Relaxation time of

the process was obtained with Arrhenius analysis and matching theoretical expectations.

Next, the sintering process of two individual NCs was simulated. Besides theoretical ap-

proaches, we performed simulations for Au NCs and compared to HRTEM experiment. The

relaxation time of the sintering process was recovered, demonstrating the prediction power

of our model by good agreement. The third system covered is the fragmentation or pinch-off
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of Ag nanorod., showing the dependence of pinch-off probability on aspect ratio R.

In Chapter 6, We also applied the stochastic model to the diffusion of epitaxial sup-

ported 3D NCs. Though similar oscillatory decay of DN was observed like Chapter 2 and

Chapter 3, the nature of the size dependence is fundamentally different. To elucidate be-

havior, we identified optimal diffusion pathways, which involve two major processes, i.e.

dissolution and reformation of surface layers of the NCs. From those optimal pathways,

the minimum excitation required for long range diffusion were extracted, which the gave

effective activation barrier of different sizes N . Our atomistic prediction of barriers matches

well with the kMC simulation and recovers the oscillating features of size dependence. For

strong adhesion, minima at NCS−3 ≤ N ≤ NCS−1 instead of NCS, due to the high ground

state degeneracy of these sizes relative to NCS. For weak adhesion, the local minima cor-

relates with closed-shell structure much more significantly. We also approach the problem

with coarse-grained continuum regime, providing insight of the increasing effective barrier

with size in a larger scale of size. Overall, the long range diffusion thus SR of these sys-

tems are important to understanding catalytic degradation. This study may lead to further

understanding of more complex environments in conditions.
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APPENDIX EQUILIBRIUM SHAPES OF UNSUPPORTED, 

SUPPORTED, AND INTERCALATED THREE-DIMENSIONAL 

METAL NANOCLUSTERS

For unsupported (or free-standing) crystalline clusters of atoms, the equilibrium crystal 

shape is determined by the classic Wulff construction [1] which is a continuum theory rather 

than a discrete atomistic formulation. The exposing surface of these equilibrium shapes are 

generally composed of different crystalline facets, and the Wulff construction states that 

the distance from the center of the cluster to the facet surface is proportional to the surface 

energy for that facet. Furthermore, the proportionality constant is the same for all facets 

orientations. As a natural consequence, the crystal surface is dominated by the facets 

with the lowest surface energies, and facets with sufficiently high surface energy can be 

completely absent. To implement Wulff construction, one must have access to the relevant 

facet surface energies. For metallic systems, earlier studies often obtained these from semi-

empirical potentials for the interaction between metal atoms (e.g., the Embedded Atom 

Method). However, more recent studies including our analyses discussed below obtain 

these values from a higher-level theory, Density Functional Theory (DFT). We will not 

provide the details of the DFT analysis here, but instead just quote the results and focus 

on presenting the corresponding Wulff shapes.

One example of the above analysis for the case of unsupported NiAl binary alloy crys-

tals with a 1:1 Ni:Al stoichiometric ratio is shown in Ref. [2]. For such a system, there is 

an additional complication in that for facet orientations corresponding to (111) or (100) 

surfaces, the surface can be either Al or Ni terminated. The termination exposed naturally
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depends on the surface energies, which depends on the environment of the cluster. Specif-

ically, it is characterized by specifying the Ni chemical potential relative to its bulk value,

∆µNi. Higher values correspond to a preference for Ni termination. The results for surface

energies γ of (111), (100), and (110) terminations as a function of ∆µNi are shown in Fig.

A.1. Fig. A.2 shows the corresponding NiAl crystal shapes under different ∆µNi.

Figure A.1: Surface energy phase diagram from DFT calculations for three low-index NiAl

surface or facets (110), (100), and (111). (100)Ni(Al) denotes the Ni (Al) termination of the

(100) surface, and (111)Ni(Al) denotes the Ni (Al) termination of the (111) surface. (110)

has a single mixed termination. Here ε = σNi + σAl − σNiAl = 1.324eV (a difference in bulk

chemical potentials). [2]

For supported 3D clusters, in addition to the surface energies of different facets, the

equilibrium shape also naturally depends on the strength of adhesion β to the substrate.

The stronger the adhesion, the greater the degree of wetting of the substrate, and the

“flatter” the equilibrium shape. In an extreme case for strong adhesion, the equilibrium

shape will be a flat 2D monolayer atoms. As an extension of Wulff construction, the

Kaischew construction [3] or the Winterbottom construction [4] determines the equilibrium

shape of these supported clusters, again within a continuum framework. Essentially, it

corresponds to the Wulff shape of the unsupported cluster, except that a portion of the

cluster adjacent to the supporting facet is removed. See Fig. A.3.
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Figure A.2: Equilibrium shapes for NiAl crystals from the Wulff construction for various

given ∆µni = 0 (a); −0.25 eV (b); −0.34 eV (c); −0.75 eV (d); −1.0 eV (e). Colors

differentiate orientations and surface terminations of crystal facets. The left, middle, and

right columns show the top view orientations along the {100}, {111}, and {110} directions,

respectively, as indicated. [2]

We apply this analysis to determine the equilibrium shapes of Cu clusters supported

on (111) facets on highly-oriented pyrolytic graphite (HOPG) and on the layered material

MoS2. For Cu on HOPG, we consider only the (111) and (100) facets to be present, with

surface energies γCu(111) = 1.292J/m2, γCu(100) = 1.438J/m2, and adhesion energy of β =

0.405J/m2 [6]. The results of the corresponding Winterbottom construction are shown in

Fig. A.4. However, in a discrete atomistic model, one cannot exactly recover the continuum



www.manaraa.com

174

Figure A.3: Equilibrium shapes of supported crystalline clusters with different adhesion β.

σA denotes the surface energy of the cluster material A, and β denotes the adhesion energy

between A and the substrate B [5].

Winterbottom shape. In Fig. A.5 we show clusters for two discrete sizes of N atoms, where

the continuum shape is relatively closely recovered by a truncated octahedral structure.

For Cu on MoS2, we retain not just (111) and (100) facets, but five other facet orientations

which higher surface energies and which are present to a correspondingly smaller degree [7].

Results for these multiple surface energies come from a published database [8]. We use the

value for the ratio of adhesion energy to (111) surface energy of β/γCu(111) = 0.543 based

on DFT analysis. Results of the corresponding Winterbottom construction are shown in

Fig. A.6.

Figure A.4: Orthographic projections of the Winterbottom construction for the equilibrium

shape of Cu supported on HOPG. The substrate surface is shown as an extended grey line.

The potion of the cluster below that grey line is removed. (111) [(100)] facets have full or

truncated hexagonal [square] borders. [6]
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Figure A.5: Supported equilibrium Cu clusters on HOPG with a discrete number of atoms

N = 1153 (a) and N = 1289 (b) close to the continuum Winterbottom shape. [6]

Figure A.6: Supported equilibrium Cu cluster on MoS2. [7]

Next, we consider the case of supported Fe clusters on HOPG [9]. An additional com-

plication here is that the crystal structure of Fe is not clear at least for smaller nanoscale

supported clusters. For this reason we have determined Winterbottom shapes for both hcp

and fcc structures. However, here we report results just for the hcp case which seems to

correspond to experimental observations. Again we consider the possibility that six distinct

surface facets with lower surface energies are present. These surface energies are taken from

a published data base [8]. The additional parameter needed is the ratio of adhesion to

surface energy which is taken as β/γ0001 = 0.146 based on DFT analysis. Results of the

corresponding Winterbottom construction are shown in Fig. A.7a.
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Figure A.7: Equilibrium shape of an hcp Fe cluster: (a) supported on HOPG (Winterbot-

tom); (b) intercalated beneath the top graphene layer of HOPG (double Winterbottom)

Red colored regions above or below the thick black line are removed. [9]

Next, we comment on the case of metal clusters intercalated under the top layer(s) of

layered materials such as graphite or MoS2 [9]. The possibility for form such clusters has

only been recognized in the last few years. It is of interest not just as a pathway to tune the

properties of the layered material, but also as a possible mechanism to protect the metal

nanocluster from oxidation, etc. One could anticipate that the upper layer(s) of the layered

material which forms a protective blanket over the nanocluster is subject to significant

strain (due to stretching) and exerts significant pressure on the nanocluster, and this is the

case. However, for an initial analysis of equilibrium shape of intercalated clusters, we have

neglected such strain effects. Then, we propose that the equilibrium shape is determined by

what we describe as a “double Winterbottom” construction where one removed a portion

of the cluster adjacent to both the underlying supporting substrate (as in the standard

Winterbottom construction), but now also a portion adjacent to the covering blanket. The
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amount removed depends on the strength of the corresponding adhesion energy relative to

the metal surface energies just as in the standard Winterbottom construction. The results of

such a double Winterbottom construction are shown for hcp Fe clusters intercalated under

the surface of HOPG in Fig. A.7b.

Finally, we note again that experimental data indicates that the protective blanket

does exert significant pressure on the intercalated nanocluster. Thus, it is reasonable to

anticipate that the actual equilibrium shape is squeezed flatter than that predicted by the

double Winterbottom construction. This is the case, and we have developed an appropriate

theory to determine these squeezed shapes. We are still refining this theory for journal

publication, so results are not presented here.
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